Abstract
This paper describes a method of proving strong normalization based on an extension of the conservation theorem. We introduce a structural notion of reduction that we call βs, and we prove that any λ-term that has a β 1 β s-normal form is strongly β-normalizable. We show how to use this result to prove the strong normalization of different typed λ-calculi.
Preview
Unable to display preview. Download preview PDF.
References
H.P. Barendregt. The lambda calculus, its syntax and semantics. North-Holland, revised edition, 1984.
H.P. Barendregt. Introduction to Generalised Type Systems. Journal of Functional Programming, 1(2):125–154, 1991.
H.P. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbai, and T. Maibaum, editors, Handbook of Logic in Computer Science. Oxford University Press, 1992.
Th. Coquand. Metamathematical investigations of a calculus of constructions. In P. Odifreddi, editor, Logic and Computer Science, pages 91–122. Academic Press, 1990.
N.G. de Bruijn. Lambda calculus notations with nameless dummies, a tool for automatic formula manipulation, with an application to the Church-Rosser theorem. Indigationes Mathematicae, 34:381–392, 1972.
N.G. de Bruijn. A survey of the project Automath. In J.P. Seldin and J.R. Hindley, editors, to H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 579–606. Academic Press, 1980.
Ph. de Groote. Définition et Propriétés d'un métacalcul de représentation de théories. PhD thesis, Université Catholique de Louvain, Unité d'Informatique, 1991.
J.H. Gallier. On Girard's “Candidats de Réductibilité”. In P. Odifreddi, editor, Logic and Computer Science, pages 123–203. Academic Press, 1990.
R.O. Gandy. Au early proof of normalization by A.M. Turing. In J. P. Seldin and J. R. Hindley, editors, to H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 453–455. Academic Press, 1980.
R.O. Gandy. Proofs of strong normalization. In J. P. Seldin and J. R. Hindley, editors, to H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 457–478. Academic Press, 1980.
H. Geuvers and M.-J. Ncderhof. Modular proof of strong normalization for the calculus of construction. Journal of Functional Programming, 1(2):155–189, 1991.
J.-Y. Girard. The system F of variable types, fifteen years later. Theoretical Computer Science, 45:159–192, 1986.
J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1989.
R. Harper, F. Housel, and G. Plotkin. A framework for defining logics. In Proceedings of the second annual IEEE symposium on logic in computer science, pages 194–204, 1987.
J.R. Hindley and J.P. Seldin. Introduction to combinators and λ-calculus. London Mathematical Society Student Texts. Cambridge University Press, 1986.
J.W. Klop. Combinatory Reduction Systems. PhD thesis, CWI, Amsterdam, Mathematical Centre Tracts Nr. 127, 1980.
R.P. Nederpelt. Strong normalization in a typed lambda calculus with lambda structured types. PhD thesis, Technische hogeschool Eindhoven, 1973.
A. Scedrov. Normalization revisited. In J.W. Gray and A. Scedrov, editors, Proceedings of the AMS research conference, pages 357–369. American Mathematical Society, 1987.
D.T. van Daalen. The language theory of Automath. PhD thesis, Technische hogeschool Eindhoven, 1980.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Groote, P. (1993). The conservation theorem revisited. In: Bezem, M., Groote, J.F. (eds) Typed Lambda Calculi and Applications. TLCA 1993. Lecture Notes in Computer Science, vol 664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0037105
Download citation
DOI: https://doi.org/10.1007/BFb0037105
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-56517-8
Online ISBN: 978-3-540-47586-6
eBook Packages: Springer Book Archive