Abstract
We extend the results of our previous paper [8] to the nonlinear case: The Lloyd polynomial of the covering has at least R distinct roots among 1,..., n, where R is the covering radius. We investigate PWC with diameter 1, finding a partial characterization. We complete an investigation begun in [8] on linear PMC with distance 1 and diameter 2.
Preview
Unable to display preview. Download preview PDF.
References
E. F. Assmus, Jr., H. F. Mattson, Jr., R. Turyn, “Cyclic codes,” Final Report, Contract no. AF 19(604)-8516, AFCRL, April 28, 1966. Sylvania Applied Research Laboratory, Waltham, Mass. (Document no. AFCRL-66–348).
L. A. Bassalygo, G. V. Zaitsev, V. A. Zinoviev, “On Uniformly Packed Codes,” Problems of Inform. Transmission, vol. 10, no. 1, 1974, pp. 9–14.
L. A. Bassalygo, G. V. Zaitsev, V. A. Zinoviev, “Note on Uniformly Packed Codes,” Problems of Inform. Transmission, vol. 13, no. 3, 1977, pp. 22–25.
A. R. Calderbank, J. M. Goethals, “On a Pair of Dual Subschemes of the Hamming Scheme Mn(q),” Europ. J. Combinatorics, 6, 1985, pp. 133–147.
R. F. Clayton, “Multiple Packings and Coverings in Algebraic Coding Theory,” Thesis, Univ. of California, Los Angeles, 1987.
G. D. Cohen, P. Frankl, “On tilings of the binary vector space,” Discrete Math., 31, 1980, pp.271–277.
G. D. Cohen, M. G. Karpovsky, H. F. Mattson, Jr., J. R. Schatz, “Covering Radius—Survey and Recent Results,” IEEE Trans. Inform. Theory IT-31, 1985, pp. 328–343.
G. D. Cohen, S. N. Litsyn, H. F. Mattson, Jr., “Binary Perfect Weighted Coverings,” Sequences '91, Positano, 17–22 June 1991, Springer-Verlag Lecture Notes in Computer Science. To appear.
P. Delsarte, “Four Fundamental Parameters of a Code and Their Combinatorial Significance,” Information and Control, vol. 23, no. 5, 1973, pp. 407–438.
J. M. Goethals, S. L. Snover, “Nearly Perfect Binary Codes,” Discrete Math., 3, 1972, pp. 65–88.
J. M. Goethals, H. C. A. van Tilborg, “Uniformly packed codes,” Philips Res. Repts 30, 1975, pp. 9–36.
M. Karpovsky, “Weight distribution of translates, covering radius and perfect codes correcting errors of the given multiplicities,” IEEE Trans. Inform. Theory IT-27, 1981, pp. 462–472.
J. E. MacDonald, “Design methods for maximum minimum-distance errorcorrecting codes,” IBM J. Res. Devel. vol. 4, 1960, pp. 43–57.
N. V. Semakov, V. A. Zinoviev, G. V. Zaitsev, “Uniformly Packed Codes,” Problems of Inform. Transmission, vol. 7, 1971, no. 1, pp. 38–50.
Th. Skolem, P. Chowla, and D. J. Lewis, “The Diophantine equation 2n−2 − 7 = x2 and related problems,” Proc. Amer. Math. Soc. 10, 1959, pp. 663–669.
G. J. M. van Wee, G. D. Cohen, S. N. Litsyn, “A note on Perfect Multiple Coverings of Hamming Spaces,” IEEE Trans. Inform. Theory, IT-37, no. 3, 1991, pp. 678–682.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1992 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cohen, G.D., Litsyn, S.N., Mattson, H.F. (1992). On perfect weighted coverings with small radius. In: Cohen, G., Lobstein, A., Zémor, G., Litsyn, S. (eds) Algebraic Coding. Algebraic Coding 1991. Lecture Notes in Computer Science, vol 573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034338
Download citation
DOI: https://doi.org/10.1007/BFb0034338
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-55130-0
Online ISBN: 978-3-540-46739-7
eBook Packages: Springer Book Archive