Merging free trees in parallel for efficient voronoi diagram construction | SpringerLink
Skip to main content

Merging free trees in parallel for efficient voronoi diagram construction

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1990)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 443))

Included in the following conference series:

Abstract

This paper describes a new approach for constructing the Voronoi diagram of n points in the plane in parallel. Our approach is based on a divide-and-conquer procedure where we implement the “marry” step by merging forests of free trees (to build the “contour” between the subproblem solutions) in O(log log n) time. This merging procedure is based an a \(\sqrt n\)-divide-and-merge technique reminiscent of the list-merging approach of Valiant. Our method also involves an optimal parallel method for computing the proximity envelope of a point set with respect to a given line. This structure facilitates the use of our fast mering procedure, for it allows the divide-and-conquer procedure to continue without needing to explicitly remove edges of recursively constructed diagrams that are not part of the final diagram. We use this approach to derive two results regarding the deterministic parallel construction of a Voronoi diagram. Specifically, we show that one can solve the Voronoi diagram problem in O(log n log log n) time and O(n log2 n) work (which improves the previous time bound while maintaining the same work bound) or, alternatively, in O(log2 n) time and O(n log n) work (which improves the previous work bound while maintaining the same time bound). Our model of computation is the CREW PRAM.

Preliminary Version

Supported by the U.S. National Science Foundation under grants CCR 8902221 and CCR 8906949

Supported by the U.S. National Science Foundation under Grant CCR-8810568 and by the NSF and DARPA under Grant CCR-8908092.

Supported by the E.C. under Esprit BRA 3075 (ALCOM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aggarwal, B. Chazelle, L. Guibas, C. Ó Dúnlaing, and C. Yap, “Parallel Computational Geometry,” Algorithmica, 3(3), 1988, 293–328.

    Google Scholar 

  2. M.J. Atallah, R. Cole, and M.T. Goodrich, “Cascading Divide-and-Conquer: A Technique for Designing Parallel Algorithms,” SIAM J. on Comput., 18(3), 1989, 499–532.

    Google Scholar 

  3. M.J. Atallah and M.T. Goodrich, “Parallel Algorithms for Some Functions of Two Convex Polygons,” Algorithmica, 3, 1988, 535–548.

    Google Scholar 

  4. M.J. Atallah, M.T. Goodrich, and S.R. Kosaraju, “Parallel Algorithms for Evaluating Sequences of Set-Manipulation Operations,” Lecture Notes 319: AWOC 88, Springer-Verlag, 1988, 1–10.

    Google Scholar 

  5. O. Berkman and U. Vishkin, “Recursive *-tree Data Structure,” Proc. 30th IEEE Symp. on Foundations of Computer Science, 1989, 496–501.

    Google Scholar 

  6. B. Chazelle and L.J. Guibas, “Fractional Cascading: I. A Data Structuring Technique,” Algorithmica, Vol. 1, No. 2, pp. 133–162.

    Google Scholar 

  7. A. Chow, “Parallel Algorithms for Geometric Problems,” Ph.D. thesis, Comp. Sci. Dept., Univ. of Illinois, 1980.

    Google Scholar 

  8. R. Cole, “Parallel Merge Sort,” SIAM J. Comput., 17(4), 1988, 770–785.

    Google Scholar 

  9. N. Dadoun and D.G. Kirkpatrick, “Parallel processing for efficient subdivision search,” Proc. 3rd Annual Symposium on Computational Geometry, 1987, 205–214.

    Google Scholar 

  10. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag (New York: 1987).

    Google Scholar 

  11. H. Edelsbrunner and R. Seidel, “Voronoi Diagrams and Arrangements,” Discrete Comput. Geom., 1, 1986, 25–44.

    Google Scholar 

  12. S. Fortune, “A sweep-line algorithm for Voronoi diagrams,” Algorithmica, 2(2), 1987, 153–174.

    Google Scholar 

  13. M.T. Goodrich, C. Ó Dúnlaing, and C. Yap “Computing the Voronoi Diagram of a Set of Line Segments in Parallel,” Lecture Notes 382: WADS '89, Springer-Verlag, 1989, 12–23.

    Google Scholar 

  14. R. Klein, Concrete and abstract Voronoi diagrams, Springer LNCS 400, 1989.

    Google Scholar 

  15. C. Kruskal, “Searching, merging, and sorting in parallel computation,” IEEE Transactions on Computers, C-32(10), 1983, 942–946.

    Google Scholar 

  16. Kruskal, C.P., Rudolph, L., and Snir, M., “The Power of Parallel Prefix,” 1985 Int. Conf. on Parallel Processing, 180–185.

    Google Scholar 

  17. Ladner, R.E., and Fischer, M.J., “Parallel Prefix Computation,” J. ACM, October 1980, 831–838.

    Google Scholar 

  18. Mehlhorn, K., Meiser, S., and Ó Dúnlaing, C., “On the construction of abstract Voronoi diagrams,” Proc 7th STACS (Rouen 1990) Springer LNCS 415, 227–239.

    Google Scholar 

  19. F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction, Springer-Verlag, New York, NY, 1985.

    Google Scholar 

  20. J.H. Reif and S. Sen, “Polling: A New Randomized Sampling Technique for Computational Geometry,” Proc. 21st ACM Symp. on Theory of Computing, 1989, 394–393.

    Google Scholar 

  21. M.I. Shamos, “Geometric Complexity,” Proc. 7th ACM Symp. on Theory of Computing, 1975, 224–233.

    Google Scholar 

  22. M.I. Shamos and D. Hoey, “Closest-Point Problems,” Proc. 15th IEEE Symp. on Foundations of Computer Science, 1975, 151–162.

    Google Scholar 

  23. M. Snir, “On Parallel Searching,” SIAM J. on Comput., Vol. 14, 1985, 688–707.

    Google Scholar 

  24. L. Valiant, “Parallelism in comparison problems,” SIAM Journal on Computing, 4:3, 1975, 348–355.

    Google Scholar 

  25. H. Wagener, “Optimally Parallel Algorithms for Convex Hull Determination,” manuscript, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael S. Paterson

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cole, R., Goodrich, M.T., Dúnlaing, C.Ó. (1990). Merging free trees in parallel for efficient voronoi diagram construction. In: Paterson, M.S. (eds) Automata, Languages and Programming. ICALP 1990. Lecture Notes in Computer Science, vol 443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032049

Download citation

  • DOI: https://doi.org/10.1007/BFb0032049

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52826-5

  • Online ISBN: 978-3-540-47159-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics