The application of a genetic approach as an algorithm for neural networks | SpringerLink
Skip to main content

The application of a genetic approach as an algorithm for neural networks

  • Neural Networks
  • Conference paper
  • First Online:
Parallel Problem Solving from Nature (PPSN 1990)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 496))

Included in the following conference series:

Abstract

Using artificial neural nets (ANNs) should help to find solutions for problems that are difficult to handle by conventional algorithms (for example: pattern recognition or language processing). The problems are not coded directly by an algorithm. They are to be solved by constructing a neural net, which is capable of learning. Hence an important research area in artificial intelligence is the construction and trial of different learning algorithms. The learning approaches to neural nets are modified algorithms from optimization theory. The goal of this report is the presentation of a learning paradigm for neural networks, which is very different from the other learning approaches: learning by genetic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eigen,M; Winkler,R.: Das Spiel; Piper München 1975.

    Google Scholar 

  2. Goldberg,D.E.: Genetic algorithms in search, optimization and machine learning; Addison-Wesley 1989.

    Google Scholar 

  3. Hinton,G.E.; Sejnowski,T.J.; Ackley,D.H.: Boltzmann Machines: Constraint Satisfaction Networks that Learn; Technical Report CMU-CS-84-119, Carnegie-Mellon University 1984.

    Google Scholar 

  4. Hinton,G.E.: Connectionist Learning Procedures; Technical Report CMU-CS-87-115; Computer Science Department Carnegie-Mellon University Pittsburgh 1987.

    Google Scholar 

  5. Holland,J.H.: Adaption in Natural and Artificial Systems; Ann Arbor The University of Michigan Press 1975.

    Google Scholar 

  6. Jantsch,E.: Die Selbstorganisation des Universums; Carl Hanser München 1979.

    Google Scholar 

  7. Hopfield, J.J.; Tank, D.W.: “Neural” Computation of Decisions in Optimization Problems; Biological Cybernetics 52, S.141–152 1985.

    PubMed  Google Scholar 

  8. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P.: Optimization by Simulated Annealing; Science Vol.220, S.671–680 1983.

    Google Scholar 

  9. Rechenberg,I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution; Friedrich Frommann Stuttgart-Bad Cannstatt 1973.

    Google Scholar 

  10. Rumelhart,D.E.; Hinton,G.E.; McCLelland,J.L.: A General Framework for Parallel Distributed Processing; in Parallel Distributed Processing Vol.1; MIT Press Cambridge Massachusetts 1986.

    Google Scholar 

  11. Rumelhart,D.E.; Hinton,G.E.; Williams,R.J.: Learning Internal Representations by Error Propagation; in Parallel Distributed Processing Vol.1; MIT Press Cambridge Massachusetts 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hans-Paul Schwefel Reinhard Männer

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heistermann, J. (1991). The application of a genetic approach as an algorithm for neural networks. In: Schwefel, HP., Männer, R. (eds) Parallel Problem Solving from Nature. PPSN 1990. Lecture Notes in Computer Science, vol 496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029767

Download citation

  • DOI: https://doi.org/10.1007/BFb0029767

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54148-6

  • Online ISBN: 978-3-540-70652-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics