Abstract
Using artificial neural nets (ANNs) should help to find solutions for problems that are difficult to handle by conventional algorithms (for example: pattern recognition or language processing). The problems are not coded directly by an algorithm. They are to be solved by constructing a neural net, which is capable of learning. Hence an important research area in artificial intelligence is the construction and trial of different learning algorithms. The learning approaches to neural nets are modified algorithms from optimization theory. The goal of this report is the presentation of a learning paradigm for neural networks, which is very different from the other learning approaches: learning by genetic algorithms.
Preview
Unable to display preview. Download preview PDF.
References
Eigen,M; Winkler,R.: Das Spiel; Piper München 1975.
Goldberg,D.E.: Genetic algorithms in search, optimization and machine learning; Addison-Wesley 1989.
Hinton,G.E.; Sejnowski,T.J.; Ackley,D.H.: Boltzmann Machines: Constraint Satisfaction Networks that Learn; Technical Report CMU-CS-84-119, Carnegie-Mellon University 1984.
Hinton,G.E.: Connectionist Learning Procedures; Technical Report CMU-CS-87-115; Computer Science Department Carnegie-Mellon University Pittsburgh 1987.
Holland,J.H.: Adaption in Natural and Artificial Systems; Ann Arbor The University of Michigan Press 1975.
Jantsch,E.: Die Selbstorganisation des Universums; Carl Hanser München 1979.
Hopfield, J.J.; Tank, D.W.: “Neural” Computation of Decisions in Optimization Problems; Biological Cybernetics 52, S.141–152 1985.
Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P.: Optimization by Simulated Annealing; Science Vol.220, S.671–680 1983.
Rechenberg,I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution; Friedrich Frommann Stuttgart-Bad Cannstatt 1973.
Rumelhart,D.E.; Hinton,G.E.; McCLelland,J.L.: A General Framework for Parallel Distributed Processing; in Parallel Distributed Processing Vol.1; MIT Press Cambridge Massachusetts 1986.
Rumelhart,D.E.; Hinton,G.E.; Williams,R.J.: Learning Internal Representations by Error Propagation; in Parallel Distributed Processing Vol.1; MIT Press Cambridge Massachusetts 1986.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Heistermann, J. (1991). The application of a genetic approach as an algorithm for neural networks. In: Schwefel, HP., Männer, R. (eds) Parallel Problem Solving from Nature. PPSN 1990. Lecture Notes in Computer Science, vol 496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029767
Download citation
DOI: https://doi.org/10.1007/BFb0029767
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-54148-6
Online ISBN: 978-3-540-70652-6
eBook Packages: Springer Book Archive