Series-parallel posets: Algebra, automata and languages | SpringerLink
Skip to main content

Series-parallel posets: Algebra, automata and languages

  • Automata and Formal Languages III
  • Conference paper
  • First Online:
STACS 98 (STACS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1373))

Included in the following conference series:

Abstract

In order to model concurrency, we extend automata theory from the usual word languages (sets of labelled linear orders) to sets of labelled series-parallel posets - or, equivalently, to sets of terms in an algebra with two product operations: sequential and parallel. We first consider languages of posets having bounded width, and characterize them using depth-nilpotent algebras. Next we introduce series-rational expressions, a natural generalization of the usual rational expressions, as well as a notion of branching automaton. We show both a Myhill-Nerode theorem and a Kleene theorem. We also look at generalizations.

Part of this work was done while the second author was visiting the Institute of Mathematical Sciences, in Chennai.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Aceto. Full abstraction for series-parallel pomsets, in Proc. TAPSOFT 91, LNCS 493, Springer (1991) 1–40.

    Google Scholar 

  2. G. Boudol and I. Castellani. Concurrency and atomicity, TCS 59 (1988) 25–84.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Bloom and Z. Ésik. Free shuffle algebras in language varieties, TCS 163 (1996) 55–98.

    Article  MATH  Google Scholar 

  4. J.R. Büchi. Finite automata, their algebras and grammars: Towards a theory of formal expressions (D. Siefkes, ed.), Springer (1989).

    Google Scholar 

  5. B. Courcelle. Graph rewriting: an algebraic and logical approach, in Handbook of Theoretical Computer Science B (J. van Leeuwen, ed.), Elsevier (1990) 193–242.

    Google Scholar 

  6. V. Diekert and G. Rozenberg. The book of traces, World Scientific (1995).

    Google Scholar 

  7. J.L. Gischer. The equational theory of pomsets, TCS 61 (1988) 199–224.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Grabowski. On partial languages, Fund. Inform. IV (1981) 427–498.

    MathSciNet  Google Scholar 

  9. R. Milner. A complete inference system for a class of regular behaviours, JCSS 28 (1984) 439–466.

    MATH  MathSciNet  Google Scholar 

  10. J.-E. Pin. Syntactic semigroups, in Handbook of Formal Language Theory 1 (G. Rozenberg and A. Salomaa, eds.), Springer (1997) 679–746.

    Google Scholar 

  11. V. Pratt. Modelling concurrency with partial orders, IJPP 15(1) (1986) 33–71.

    MATH  MathSciNet  Google Scholar 

  12. W. Reisig. Petri nets, an introduction, Springer (1985).

    Google Scholar 

  13. J.W. Thatcher and J.B. Wright. Generalized finite automata with an application to a decision problem of second order logic, Math. Syst. Theory 2 (1968) 57–82.

    Article  MathSciNet  Google Scholar 

  14. J. Valdes, R.E. Tarjan and E.L. Lawler. The recognition of series-parallel digraphs, SIAM J. Comput. 11(2) (1981) 298–313.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michel Morvan Christoph Meinel Daniel Krob

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Lodaya, K., Weil, P. (1998). Series-parallel posets: Algebra, automata and languages. In: Morvan, M., Meinel, C., Krob, D. (eds) STACS 98. STACS 1998. Lecture Notes in Computer Science, vol 1373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028590

Download citation

  • DOI: https://doi.org/10.1007/BFb0028590

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64230-5

  • Online ISBN: 978-3-540-69705-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics