On the structure of valiant's complexity classes | SpringerLink
Skip to main content

On the structure of valiant's complexity classes

  • Complexity II
  • Conference paper
  • First Online:
STACS 98 (STACS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1373))

Included in the following conference series:

Abstract

In [25,27] Valiant developed an algebraic analogue of the theory of NP-completeness for computations with polynomials over a field. We further develop this theory in the spirit of structural complexity and obtain analogues of well-known results by Baker, Gill, and Solovay [1], Ladner [18], and Schöning [23,24].

We show that if Valiant's hypothesis is true, then there is a p-definable family, which is neither p-computable nor VNP-complete. More generally, we define the posets of p-degrees and c-degrees of p-definable families and prove that any countable poset can embedded in either of them, provided Valiant's hypothesis is true. Moreover, we establish the existence of minimal pairs for VP in VNP.

Over finite fields, we give a specific example of a family of polynomials which is neither VNP-complete nor p-computable, provided the polynomial hierarchy does not collapse.

We define relativized complexity classes VPh and VNPh and construct complete families in these classes. Moreover, we prove that there is a p-family h satisfying VPh = VNPh.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Baker, J. Gill, and R. Solovay. Relativizations of the P =?NP question. SIAM J. Comp., 4:431–442, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Ben-David, K. Meer, and C. Michaux. A note on non-complete problems in NP. Preprint, 1996.

    Google Scholar 

  3. C.H. Bennett and J. Gill. Relative to a random oracle A, PA ≠ NPA ≠ co-NPA with probability 1. SIAM J. Comp., 10:96–113, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Blum, F. Cucker, M. Shub, and S. Smale. Algebraic Settings for the Problem “PNP?”. In The mathematics of numerical analysis, number 32 in Lectures in Applied Mathematics, pages 125–144. Amer. Math. Soc., 1996.

    Google Scholar 

  5. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers. Bull. Amer. Math. Soc., 21:1–46, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Bürgisser. Cook's versus Valiant's hypothesis. Preprint, University of Zurich, 1997.

    Google Scholar 

  7. P. Bürgisser. Some complete families of polynomials. Manuscript, 1997.

    Google Scholar 

  8. P. Bürgisser, M. Clausen, and M.A. Shokrollahi. Algebraic Complexity Theory. Number 315 in Grundlehren der mathematischen Wissenschaften. Springer Verlag, 1996.

    Google Scholar 

  9. J. Cai and L.A. Hemachandra. On the power of parity polynomial time. In Proc. STACS'89, number 349 in LNCS, pages 229–239. Springer Verlag, 1989.

    Google Scholar 

  10. O. Chapuis and P. Koiran. Saturation and Stability in the Theory of Computation over the Reals. Preprint, 1997.

    Google Scholar 

  11. S.A. Cook. The complexity of theorem proving procedures. In Proc. 3rd ACM STOC, pages 151–158, 1971.

    Google Scholar 

  12. T. Emerson. Relativizations of the P=?NP question over the reals (and other ordered rings). Theoret. Comp. Sci., 133:15–22, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  13. W. Feller. An introduction to probability theory and its applications, volume 2. John Wiley & Sons, 1971.

    Google Scholar 

  14. J. von zur Gathen. Feasible arithmetic computations: Valiant's hypothesis. J. Symb. Comp., 4:137–172, 1987.

    Article  MATH  Google Scholar 

  15. J. Heintz and J. Morgenstern. On the intrinsic complexity of elimination theory. Journal of Complexity, 9:471–498, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  16. R.M. Karp and R.J. Lipton. Turing machines that take advice. In Logic and Algorithmic: An international Symposium held in honor of Ernst Specker, pages 255–273. Monogr. No. 30 de l'Enseign. Math., 1982.

    Google Scholar 

  17. P. Koiran. Hilbert's Nullstellensatz is in the polynomial hierarchy. J. Compl., 12:273–286, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  18. R.E. Ladner. On the structure of polynomial time reducibility. J. ACM, 22:155–171, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  19. Landweber, Lipton, and Robertson. On the structure of sets in NP and other complexity classes. Theoret. Comp. Sci., 15:181–200, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  20. G. Malajovich and K. Meer. On the structure of NP. SIAM J. Comp. to appear.

    Google Scholar 

  21. C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

    Google Scholar 

  22. C.H. Papadimitriou and S. Zachos. Two remarks on the power of counting. In Proc. 6th GI conference in Theoretical Computer Science, number 145 in LNCS, pages 269–276. Springer Verlag, 1983.

    Google Scholar 

  23. U. Schöning. A uniform approach to obtain diagonal sets in complexity classes. Theoret. Comp. Sci., 18:95–103, 1982.

    Article  MATH  Google Scholar 

  24. U. Schöning. Minimal pairs for P. Theoret. Comp. Sci., 31:41–48, 1984.

    Article  MATH  Google Scholar 

  25. L.G. Valiant. Completeness classes in algebra. In Proc. 11th ACM STOC, pages 249–261, 1979.

    Google Scholar 

  26. L.G. Valiant. The complexity of computing the permanent. Theoret. Comp. Sci., 8:189–201, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  27. L.G. Valiant. Reducibility by algebraic projections. In Logic and Algorithmic: an International Symposium held in honor of Ernst Specker, volume 30, pages 365–380. Monographies de l'Enseignement Mathématique, 1982.

    Google Scholar 

  28. L.G. Valiant and V.V. Vazirani. NP is as easy as detecting unique solutions. Theoret. Comp. Sci., 47:85–93, 1986.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michel Morvan Christoph Meinel Daniel Krob

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Bürgisser, P. (1998). On the structure of valiant's complexity classes. In: Morvan, M., Meinel, C., Krob, D. (eds) STACS 98. STACS 1998. Lecture Notes in Computer Science, vol 1373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028561

Download citation

  • DOI: https://doi.org/10.1007/BFb0028561

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64230-5

  • Online ISBN: 978-3-540-69705-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics