Abstract
In this paper, we contribute to the proof-theory of Reiter's Default Logic by introducing a sequent calculus for skeptical reasoning. The main features of this calculus are simplicity and regularity, and the fact that proofs can be surprisingly concise and, in many cases, involve only a small part of the default theory.
Preview
Unable to display preview. Download preview PDF.
References
G. Amati, L. Carlucci Aiello, D. Gabbay, F. Pirri. A proof theoretical approach to default reasoning I: tableaux for default logic. Journal of Logic and Computation, 6(2):205–231, 1996.
F. Baader, B. Hollunder. Embedding defaults into terminological knowledge representation formalisms. Journal of Automated Reasoning, 14(1):149–180, 1995.
C. Bell, A. Nerode, R. Ng and V.S. Subrahmanian. Implementing deductive databases by linear programming. In Proc. of ACM-PODS, 1992.
C. Bell, A. Nerode, R. Ng and V.S. Subrahmanian. Implementing stable semantics by linear programming. In [33].
A. Bochman. On the relation between default and modal consequence relations. In Proc of KR'94, 63–74, Morgan Kaufmann, 1994.
P.A.Bonatti. Sequent calculi for default and autoepistemic logics. In Proc. of TABLEAUX'96, LNAI 1071, pp. 127–142, Springer-Verlag, Berlin, 1996.
P.A.Bonatti. Autoepistemic logic programming. Journal of Automated Reasoning, 13:35–67, 1994.
P.A. Bonatti. A Gentzen system for non-theorems. Technical Report CD-TR 93/52, Christian Doppler Labor für Expertensysteme, Technische Universität, Wien, September 1993.
G. Brewka. Cumulative default logic: in defense of nonmonotonic inference rules. Artificial Intelligence 50:183–205, 1991.
X. Caicedo. A formal system for the non-theorems of the propositional calculus. Notre Dame Journal of Formal Logic, 19:147–151, (1978).
R. Dutkiewicz. The method of axiomatic rejection for the intuitionistic propositional calculus. Studia Logica, 48:449–459, (1989).
U. Egly, H. Tompits. Non-elementary speed-ups in default logic. Submitted.
D. Gabbay et al. (eds). Handbook of Logic in Artificial Intelligence and Logic Programming, Vol.III, Clarendon Press, Oxford, 1994.
D. Gabbay. Theoretical foundations for non-monotonic reasoning in expert systems. In K.R. Apt (ed.) Logics and Models of Concurrent Systems. Springer-Verlag, Berlin, 1985.
M.L. Ginsberg. A circumscriptive theorem prover. Artificial Intelligence, 39(2):209–230, (1989).
Y.J. Jiang. A first step towards autoepistemic logic programming. Computers and Artificial Intelligence, 10(5):419–441, (1992).
K. Konolige. On the Relationship between Default and Autoepistemic Logic. Artificial Intelligence, 35:343–382, 1988. + Errata, same journal, 41:115, 1989/90.
K. Konolige. On the Relation Between Autoepistemic Logic and Circumscription. In Proceedings IJCAI-89, 1989.
S. Kraus, D. Lehmann and M. Magidor. Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44(1):167–207, (1990).
H.J. Levesque. All I know: a study in autoepistemic logic. Artificial Intelligence, 42:263–309, (1990).
J. Łukasiewicz. Aristotle's syllogistic from the standpoint of modern formal logic. Clarendon Press, Oxford, 1951.
W. Lukasziewicz. Non-Monotonic Reasoning. Ellis Horwood Limited, Chichester, England, 1990.
J. McCarthy. Circumscription: a form of non-monotonic reasoning. Artificial Intelligence, 13:27–39, (1980).
D. Makinson. General theory of cumulative inference. In M. Reinfrank, J. De Kleer, M.L. Ginsberg and E. Sandewall (eds.) Non-monotonic Reasoning, LNAI 346, Springer-Verlag, Berlin, 1989, 1–18.
W. Marek, A. Nerode, M. Trusczyński (eds). Logic Programming and Non-monotonic Reasoning: Proc. of the Third Int. Conference. LNAI 928, Springer-Verlag, Berlin, 1995.
W. Marek, M. Truszczyński. Nonmonotonic Logics — Context-Dependent Reasoning. Springer, 1993.
W. Marek, M. Trusczyński. Computing intersections of autoepistemic expansions. In [29].
M.A. Nait Abdallah. An extended framework for default reasoning. In Proc. of FCT'89, LNCS 380, 339–348, Springer-Verlag, 1989.
A. Nerode, W. Marek, V.S. Subrahmanian (eds.). Logic Programming and Non-monotonic Reasoning: Proc. of the First Int. Workshop, MIT Press, Cambridge, Massachusetts, 1991.
I. Niemela. Decision procedures for autoepistemic logic. Proc. CADE-88, LNCS 310, Springer-Verlag, 1988.
I. Niemela. Toward efficient default reasoning. Proc. IJCAI'95, 312–318, Morgan Kaufmann, 1995.
N. Olivetti. Tableaux and sequent calculus for minimal entailment. Journal of Automated Reasoning, 9:99–139, (1992).
L. M. Pereira, A. Nerode (eds.). Logic Programming and Non-monotonic Reasoning: Proc. of the Second Int. Workshop, MIT Press, Cambridge, Massachusetts, 1993.
R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, (1980).
V. Risch, C.B. Schwind. Tableau-based characterization and theorem proving for default logic. Journal of Automated Reasoning, 13:223–242, 1994.
T. Schaub. A new methodology for query answering in default logics via structureoriented theorem proving. Journal of Automated Reasoning, 15(1):95–165, 1995.
D. Scott. Completeness proofs for the intuitionistic sentential calculus. Summaries of Talks Presented at the Summer Institute for Symbolic Logic (Itaha, Cornell University, July 1957), Princeton: Institute for Defense Analyses, Communications Research Division, 1957, 231–242.
J. Słupecki, G. Bryll, U. Wybraniec-Skardowska. Theory of rejected propositions. Studia Logica, 29:75–115, (1971).
M. Tiomkin. Proving unprovability. In Proc. of LICS'88, 1988.
A. Varzi. Complementary sentential logics. Bulletin of the Section of Logic, 19:112–116, (1990).
A. Varzi. Complementary logics for classical prepositional languages. Kriterion. Zeitschrift für Philosophie, 4:20–24 (1992).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bonatti, P.A., Olivetti, N. (1997). A sequent calculus for skeptical Default Logic. In: Galmiche, D. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 1997. Lecture Notes in Computer Science, vol 1227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027408
Download citation
DOI: https://doi.org/10.1007/BFb0027408
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-62920-7
Online ISBN: 978-3-540-69046-7
eBook Packages: Springer Book Archive