Abstract
A counting argument is used to establish a lower bound of Ω(2n) on the planar circuit size of almost all n-argument Boolean functions. The counting argument exploits the fact that planar circuits can be more concisely specified than general circuits.
Preview
Unable to display preview. Download preview PDF.
References
N. Blum. A Boolean function requiring 3n network size. Theoret. Comput. Sci. 28 (1984), 337–345.
M.J. Fischer, A.R. Meyer and M.S. Paterson. Ω(n log n) lower bounds on the length of Boolean formulas. SIAM. J. Comput. 11 (1982), 416–427.
M. Furst, J.B. Saxe and M. Sipser. Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory 17 (1984), 13–27.
E.A. Lamagna. The complexity of monotone networks for certain bilinear forms, routing problems, sorting, and merging. IEEE Trans. Computers C-28 (1979), 773–782.
R.J. Lipton and R.E. Tarjan. Applications of a planar separator theorem. SIAM J. Comput. 9 (1980), 615–627.
O.B. Lupanov. Ob odnom methode sinteza skhem. Izv. VUZ (Radio fizika) 1 (1958), 120–140.
O.B. Lupanov. Complexity of formula realisation of functions of logical algebra. Problemy Kibernet. 3 (1960), 61–80; Problems of Cybernetics 3 (1962), 782–811.
W.F.McColl and M.S.Paterson. The planar realization of Boolean functions. Theory of Computation Report No. 60, University of Warwick (1984).
E.I. Neciporuk. A Boolean function. Dokl. Akad. Nauk. SSSR 169 (1966), 765–766; Soviet Math. Dokl. 7 (1966), 999–1000.
W.J. Paul. A 2.5n — lower bound on the combinational complexity of Boolean functions. SIAM J. Comput. 6 (1977), 427–443.
J. Riordan and C.E. Shannon. The number of two-terminal series-parallel networks. J. Math. and Phys. 21 (1942), 83–93.
J.E.Savage. The Complexity of Computing. John Wiley and Sons (1976).
J.E.Savage. Planar circuit complexity and the performance of VLSI algorithms. VLSI Systems and Computations, H.T.Kung, B.Sproull and G.Steele (eds.), Computer Science Press (1981), 61–68. Expanded version appears as INRIA Report No. 77, INRIA, Rocquencourt, France (1981).
C.P. Schnorr. Zwei lineare untere schranken für die komplexität Boolescher funktionen. Computing 13 (1974), 155–171.
C.E. Shannon. The synthesis of two-terminal switching circuits. Bell System Tech. J. 28 (1949), 59–98.
W.T. Tutte. A census of planar triangulations. Canadian J. Math. 14 (1962), 21–38.
I. Wegener. Boolean functions whose monotone complexity is of size n 2/log n. Theoret. Comput. Sci. 21 (1982), 213–224.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1984 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
McColl, W.F. (1984). Planar circuits have short specifications. In: Mehlhorn, K. (eds) STACS 85. STACS 1985. Lecture Notes in Computer Science, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0024012
Download citation
DOI: https://doi.org/10.1007/BFb0024012
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-13912-6
Online ISBN: 978-3-540-39136-4
eBook Packages: Springer Book Archive