Abstract
We study restricted one counter languages, that is, languages belonging to Rocl, the full trio generated by D1′*, the restricted Dyck language over one pair of parentheses. We show that every generator of Rocl is a bifaithfull one and that there exists a one counter language which dominates the other ones by length preserving rational transduction. Then, we establish that the pumping lemma for linear languages is almost true for restricted one counter languages. At last, we prove that Rocl contains no non-rational AFL and, if Rocl is included in the smallest full AFL containing a full semi-AFL L, then Rocl is included in L. Moreover, if Rocl is included in the smallest full AFL closed under substitution containing a context-free full trio L, then Rocl is included in L.
Preview
Unable to display preview. Download preview PDF.
References
J.M. AUTEBERT, “Non-principalité du cylindre des langages à compteur”, Math. Systems Theory 11 (1977), 157–167.
J. BEAUQUIER, “Contribution à l'étude de la complexité structurelle des langages algébriques”, Thèse Sc. Math., Paris, 1977.
J. BEAUQUIER, “Indépendance of linear and one-counter generators”, Fundamental of computation theory, Akademie-Verlag, Berlin, 1979, 45–51.
J. BERSTEL, “Transductions and context-free languages”, Teubner Verlag 1979.
J. BERSTEL et L. BOASSON, “Une suite décroissante de cônes rationnels”, in Automata Languages and Programming, Loeckx (Ed.), Lecture Notes in Computer Science 14 (1974), 383–397.
L. BOASSON, “Two iteration theorems for some families of languages”, J. of Comput. and Syst. Sciences 7 (1973), 583–596.
L. BOASSON et M. NIVAT, “Sur diverses familles de languages fermées par transductions rationnelles”, Acta Informatica 2 (1973), 180–188.
R. BOOK, S. GREIBACH et C. WRATHALL, “Reset Machines”, J. of Comput. and Syst. Sciences 19 (1979), 256–276.
R. BOOK et M. NIVAT, “Linear languages and the intersection closures of classes of languages”, SIAM J. Comput. 7 (1978), 167–177.
S. EILENBERG, “Automata languages and machines”, vol. A, Academic Press, New York, 1974.
S. GINSBURG, J. GOLDSTINE et S. GREIBACH, “Uniformly erasable AFL”, J. of Comput. and Syst. Sciences 10 (1975), 165–182.
S. GINSBURG, J. GOLDSTINE et S. GREIBACH, “Some uniformly erasable families of languages”, Theoretical Computer Science 2 (1976), 29–44.
S. GREIBACH, “An infinite hierarchy of context-free languages”, J. Assoc. Comput. Mach. 16 (1969), 91–106.
S. GREIBACH, “The hardest context-free language”, SIAM J. Comput. 2 (1973), 304–310.
S. GREIBACH, “One counter languages and the IRS condition”, J. of Comput. and Syst. Sciences 10 (1975), 237–247.
S. GREIBACH, “A note on the recognition of one counter languages”, RAIRO Informatique théorique R2 (1975), 5–12.
S. GREIBACH, “Remarks on blind and partially blind one-way multicounter machines”, Theoretical Computer Science 7 (1978), 311–324.
S. GREIBACH, “One counter languages and the chevron operation”, RAIRO Informatique Théorique 13 (1979), 189–194.
M. JANTZEN, “On the hierarchy of Petri Net Languages”, RAIRO Informatique Théorique 13 (1979), 19–30.
M. JANTZEN, “The power of Synchronizing operations on strings”, 1980, Publication de University of California at Santa Barbara.
M. LATTEUX, “Cônes rationnels commutativement clos”, RAIRO Informatique Théorique 11 (1977), 29–51.
M. LATTEUX, “Langages à un compteur”, Publication IT-25-80, Lille 1980, soumis pour publication.
M. LATTEUX, “Langages commutatifs”, Thèse Sc. Math., Lille, 1978.
M. LATTEUX, “Cônes rationnels commutatifs”, J. of Comput. and Syst. Sciences, 18 (1979), 307–333.
M. LATTEUX, “Sur les générateurs algébriques et linéaires”, Acta Informatica 13 (1980), 347–363.
M. LATTEUX, “A propos du lemme de substitution”, 1980, à paraître dans Theoretical Computer Science.
M. LATTEUX et J. LEGUY, “Une propriété de la famille GRE”, Fundamental of Computation theory, Adademie-Verlag, Berlin, 1979, 255–261.
J. LEGUY, “Transductions rationnelles décroissantes”, 1979, à paraître dans RAIRO Informatique théorique.
J. LEGUY, “Transduction rationnelle décroissante et substitution”, 1980, Thèse, Lille.
M. NIVAT, “Transductions des languages de Chomsky”, Thèse Sc. Math., Grenoble, 1967.
A. SALOMAA, “On the index of a context-free grammar and language”, Information and Control 14 (1969), 474–477.
P. TURAKAINEN, “On some bounded semi AFLs and AFLs”, 1980, à paraître dans Information Sciences.
M.K. YNTEMA, “Inclusion relations among families of context-free languages”, Information and Control 10 (1967), 572–597.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1981 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Latteux, M. (1981). Quelques proprietes des langages a un Compteur. In: Deussen, P. (eds) Theoretical Computer Science. Lecture Notes in Computer Science, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0017296
Download citation
DOI: https://doi.org/10.1007/BFb0017296
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-10576-3
Online ISBN: 978-3-540-38561-5
eBook Packages: Springer Book Archive