Weighted domination on cocomparability graphs | SpringerLink
Skip to main content

Weighted domination on cocomparability graphs

  • Session 3B
  • Conference paper
  • First Online:
Algorithms and Computations (ISAAC 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1004))

Included in the following conference series:

Abstract

It is shown in this paper that the weighted domination problem and its two variants, the weighted connected domination and weighted total domination problems are NP-complete on cocomparability graphs when arbitrary integer vertex weights are allowed and all of them can be solved in polynomial time if vertex weights are integers and less than or equal to a constant c. Besides, an OV¦2) algorithm is given for the weighted independent perfect domination problem of a cocomparability graph G=(V, E).

Supported partly by the National Science Council of the Republic of China under grant NSC 85-2121-M-194-020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. W. Bange, A. E. Barkauskas, and P. T. Slater, Efficient dominating sets in graphs, Applications of Discrete Mathematics, R. D. Ringeisen and F. S. Roberts, eds., SIAM, Philad. (1988)189–199.

    Google Scholar 

  2. G. J. Chang, Private communication.

    Google Scholar 

  3. G. J. Chang, C. Pandu Rangan and S. R. Coorg, Weighted independent perfect domination on cocomparability graphs, Lecture Notes in Computer Science, Vol. 766, Springer-Verlag, (1993) 506–514.

    Google Scholar 

  4. M. S. Chang and Y. C. Liu, Polynomial algorithms for the weighted perfect domination problems on chordal graphs and split graphs, Information Process. Lett. 48 (1993) 205–210.

    Google Scholar 

  5. D. G. Corneil and L. Stewart, Dominating sets in perfect graphs, Discrete Math. 86 (1990) 145–164.

    Google Scholar 

  6. P. Damaschke, J. S. Deogun, D. Kratsch and G. Steiner, Finding Hamiltonian paths in cocomparability graphs using bump number algorithm, Order 8 (1992) 383–391.

    Google Scholar 

  7. J. S. Deogun and G. Steiner, Hamiltonian cycle is polynomial on cocomparability graphs, Discrete Appl. Math. 39 (1992) 165–172.

    Google Scholar 

  8. J. S. Deogun and G. Steiner, Polynomial algorithms for Hamiltonian cycle in cocomparability graphs, SIAM J. Comput., to appear.

    Google Scholar 

  9. M. Farber, Independent domination in chordal graphs, Operations Research Lett. 4 (1982) 134–138.

    Google Scholar 

  10. M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to the theory of NP-completeness, (1979) W. H. Freeman, New York.

    Google Scholar 

  11. D. Kratsch and L. Stewart, Domination on cocomparability graphs, SIAM J. Disc. Math. 6 (1993), 400–417.

    Google Scholar 

  12. R. M. McConnell and J. P. Spinrad, Linear time modular decomposition and efficient transitive orientation of comparability graphs, Proc. of the fifth annual ACM-SIAM symposium on discrete algorithms (1994) 536–545.

    Google Scholar 

  13. G. K. Manacher and T. A. Mankus, Incorporating negative-weight vertices in certain vertex-search graph algorithms, Information Process. Lett., 42 (1992) 293–294.

    Google Scholar 

  14. R. Sedgewick, Algorithms, Addison-Wesley Publishing Company, Massachusetts (1983).

    Google Scholar 

  15. J. Spinrad, On comparability and permutation graphs, SIAM J. Comput. 14 (1985) 658–670.

    Google Scholar 

  16. C. C. Yen and R. C. T. Lee, The weighted perfect domination problem, Inform. Processing Letters 35 (1990) 295–299.

    Google Scholar 

  17. C. C. Yen and R. C. T. Lee, The weighted perfect domination problem and its variants, manuscript.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John Staples Peter Eades Naoki Katoh Alistair Moffat

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chang, MS. (1995). Weighted domination on cocomparability graphs. In: Staples, J., Eades, P., Katoh, N., Moffat, A. (eds) Algorithms and Computations. ISAAC 1995. Lecture Notes in Computer Science, vol 1004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0015415

Download citation

  • DOI: https://doi.org/10.1007/BFb0015415

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60573-7

  • Online ISBN: 978-3-540-47766-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics