Structure in average case complexity | SpringerLink
Skip to main content

Structure in average case complexity

  • Session 3A
  • Conference paper
  • First Online:
Algorithms and Computations (ISAAC 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1004))

Included in the following conference series:

  • 175 Accesses

Abstract

In 1990 Schapire gave an equivalent characterization of Levin's notion of functions, that are polynomial on average. This characterization gives a very smooth translation from worst case complexity to average case complexity of the notions for time and space complexity. We prove tight space and time hierarchy theorems and discuss the structure of deterministic and nondeterministic average case complexity classes.

The research of this author was supported by the Deutsche Forschungsgemeinschaft, grant No. Schö 302/4-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I. Springer, 1988.

    Google Scholar 

  2. S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory of average case complexity. JCSS, 44(2):193–219, 1992.

    Google Scholar 

  3. R.V. Book. Tally languages and complexity classes. Inf. and Control, 26:281–287, 1974.

    Google Scholar 

  4. R.V. Book and D. Du. The existence and density of generalized complexity cores. J. ACM, 34(3):718–730, 1987.

    Google Scholar 

  5. J. Cai and A. Selman. Average time complexity classes. Technical Report TR95-019, ECCC Trier, 1995.

    Google Scholar 

  6. S.A. Cook. A hierarchy for nondeterministic time complexity. JCSS, 7:343–353, 1973.

    Google Scholar 

  7. M. Goldmann, P. Grape, and J. Håstad. On average time hierarchies. IPL, 49:15–20, 1994.

    Google Scholar 

  8. O. Goldreich. Towards a theory of average case complexity. Technical report, Technion Haifa, Israel, 1988.

    Google Scholar 

  9. Y. Gurevich. Average case complexity. JCSS, 42(3):346–398, 1991.

    Google Scholar 

  10. F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape turing machines. J. ACM, 13(4):533–546, 1966.

    Google Scholar 

  11. R. Impagliazzo. A personal view of average-case complexity. In Proc. 10th STRUCTURE, pages 134–147, 1995.

    Google Scholar 

  12. C. Karg. Strukturfragen im Umfeld der Durchschnittskomplexität. Master's thesis, Universität Ulm, 1994.

    Google Scholar 

  13. K.I. Ko and H. Friedman. Computational complexity of real functions. TCS, 20:323–352, 1982.

    Google Scholar 

  14. L. Levin. Problems, complete in “average” instance. In Proc. 16th STOC, page 465, 1984.

    Google Scholar 

  15. L. Levin. Average case complete problems. SIAM J. Comput., 15:285–286, 1986.

    Google Scholar 

  16. R. Reischuk and C. Schindelhauer. Precise average case complexity. In Proc. 10th STACS, 1993.

    Google Scholar 

  17. R.E. Schapire. The emerging theory of average case complexity. Technical Report 431, MIT, 1990.

    Google Scholar 

  18. R. Schuler. Some properties of sets tractable under every polynomial-time computable distribution. IPL, 1995.

    Google Scholar 

  19. R. Schuler and O. Watanabe. Towards average-case complexity analysis of NP optimization problems. In Proc. 10th STRUCTURE, pages 148–159, 1995.

    Google Scholar 

  20. R. Schuler and T. Yamakami. Structural average case complexity. In Proc. 12th FST&TCS LNCS 652, pages 128–139, 1992.

    Google Scholar 

  21. R. Schuler and T. Yamakami. Sets computable in polynomial time on average. In Proc. 1st International Computing and Combinatorics Conference, 1995.

    Google Scholar 

  22. J. Wang and J. Belanger. On average P vs. average NP. In K. Ambos-Spies, S. Homer, and U. Schöning, editors, Complexity Theory—Current Research. Cambridge University Press, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John Staples Peter Eades Naoki Katoh Alistair Moffat

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karg, C., Schuler, R. (1995). Structure in average case complexity. In: Staples, J., Eades, P., Katoh, N., Moffat, A. (eds) Algorithms and Computations. ISAAC 1995. Lecture Notes in Computer Science, vol 1004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0015409

Download citation

  • DOI: https://doi.org/10.1007/BFb0015409

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60573-7

  • Online ISBN: 978-3-540-47766-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics