Pole assignment by output feedback | SpringerLink
Skip to main content

Pole assignment by output feedback

  • Chapter
  • First Online:
Three Decades of Mathematical System Theory

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 135))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. G. B. Airy, “On the regulator of the clock-work for effecting uniform movement of equatoreals,” Memoirs of the Royal Astronomical Society 11 (1840) 249–267.

    Google Scholar 

  2. G. B. Airy, “Supplement to the paper ‘On the regulator of the clock-work for effecting uniform movement of equatoreals,'” Memoirs of the Royal Astronomical Society 20 (1851) 115–119.

    Google Scholar 

  3. J. C. Maxwell, “On governors,” Proc. Royal Society London 16 (1868) 270–283.

    Google Scholar 

  4. R. E. Kalman, “Algebraic geometric description of the class of linear systems of constant dimension,” 8th Annual Princeton Conference on Information Sciences and Systems, Princeton, NJ, 1974.

    Google Scholar 

  5. M. Hazewinkel and R. E. Kalman, “On invariants, canonical forms and moduli for linear, constant, finite-dimensional dynamical systems,” in Proc. of CNR-CISM Symp. on Alg. Sys. Th., Udine (1975), Lect. Notes in Econ. Math. Sys. Th., Vol. 131, Springer-Verlag, Heidelberg, 1976, 48–60.

    Google Scholar 

  6. J. M. C. Clark, “The consistent selection of local coordinates in linear system identification,” Proc. JACC, Purdue U., 1976.

    Google Scholar 

  7. C. I. Byrnes, “On the moduli space for linear dynamical systems,” in Proc. of 1976 NASA-Ames Conference on Geometric Control Theory, (C. F. Martin and R. Hermann, eds.) Math. Sci. Press, 1977, 229–276.

    Google Scholar 

  8. E. J. Davison and S.-H. Wang, “Properties of linear time-invariant multivariable systems subject to arbitrary output and state feedback,” IEEE Trans. Aut. Control 18 (1973) 24–32.

    Article  Google Scholar 

  9. B. D. O. Anderson, N. K. Bose and E. I. Jury, “Output feedback stabilization and related problems-solution via decision algebra methods,” IEEE Trans. Aut. Control, AC-20 (1975) 53–66.

    Article  Google Scholar 

  10. I. Postlethwaite and A. G. J. Mac Farlane, “A complex variable approach to the analysis of linear multivariable feedback systems,” Lecture Notes in Control and Inf. Sciences 12 Springer-Verlag, New York 1979.

    Google Scholar 

  11. R. Hermann and C. F. Martin, “Applications of algebraic geometry to system theory-Part I,” IEEE Trans. Aut. Control, AC-22 (1977) 19–25.

    Article  Google Scholar 

  12. C. F. Martin and R. Hermann, “Applications of algebraic geometry to system theory: The McMillan degree and Kronecker indices as topological and holomorphic invariants,” SIAM J. Control 16 (1978) 743–755.

    Article  Google Scholar 

  13. R. Hermann and C.F. Martin, “Applications of algebraic geometry to system theory; Part II: Feedback and pole-placement for linear Hamiltonian systems,” Proc. of IEEE 65 (1977) 841–848.

    Google Scholar 

  14. H. Kimura, “Pole assignment by gain output feedback,” IEEE Trans. Aut. Control AC-20 (1975) 509–516.

    Article  Google Scholar 

  15. J. C. Willems and W. H. Hesselink, “Generic properties of the pole-placement problem,” Proc. of the 7th IFAC Congress (1978) 1725–1729.

    Google Scholar 

  16. R. W. Brockett and C. I. Byrnes, “Multivariable Nyquist criteria, root loci and pole placement: A geometric viewpoint,” IEEE Trans. Aut. Control AC-26 (1981) 271–284.

    Article  Google Scholar 

  17. T. E. Djaferis, “Generic pole assignment using dynamic output feedback,” Int. J. Control 37 (1983) 127–144.

    Google Scholar 

  18. H. Seraji, “Design of pole placement compensators for multivariable systems,” Automatica 16 (1980) 335–338.

    Article  Google Scholar 

  19. P. K. Stevens, Algebro-Geometric Methods for Linear Multivariable Feedback Systems, Ph.D. Dissertation, Harvard University, 1982.

    Google Scholar 

  20. M. Vidyasagar and N. Viswanadhan, “Algebraic design techniques for reliable stabilization,” IEEE Trans. Aut. Cont. AC-27 (1982) 1085–1095.

    Article  Google Scholar 

  21. B. K. Ghosh, “Simultaneous stabilization and pole-placement of a multimode linear dynamical system,” Ph.D. dissertation, Harvard Univ., 1983.

    Google Scholar 

  22. M. L. J. Hautus, “Stabilization, controllability, and observability of linear autonomous systems,” Proc. Kon. Nederl. Akadamie van Wetenschappen-Amsterdam, Series A, 73 (1970) 448–455.

    Google Scholar 

  23. J. Rosenthal, “Tuning natural frequencies by output feedback,” Computation and Control (K. Bowers and J. Lund, eds.) Birkhäuser, Boston, 1989.

    Google Scholar 

  24. A. S. Morse, W. A. Wolovich and B. D. O. Anderson, “Generic pole assignment: Preliminary results,” Proc. 20th IEEE Conf. on Decision and Control, San Diego, 1981.

    Google Scholar 

  25. C. I. Byrnes and B. D. O. Anderson, “Output feedback and generic stabilizability,” SIAM J. on Control 22 (1984) 362–380.

    Article  Google Scholar 

  26. D. F. Delchamps, State Space and Input-Output Linear Systems, Springer-Verlag, New York, 1988.

    Google Scholar 

  27. C. I. Byrnes, “On the control of certain infinite dimensional systems by algebrogeometric techniques,” Amer. J. Math. 100 (1978) 1333–1381.

    Google Scholar 

  28. F. M. Brasch and J. B. Pearson, “Pole placement using dynamic compensation,” IEEE Trans. Aut. Control AC-15 (1970) 34–43.

    Article  Google Scholar 

  29. C. I. Byrnes and P. K. Stevens, “Pole placement by static and dynamic output feedback,” Proc. of 21st IEEE Conf. on Dec. and Control Orlando, 1982.

    Google Scholar 

  30. R. R. Bitmead, S. Y. Kung, B. D. O. Anderson and T. Kailath, “Greatest common divisors via generalized Sylvester and Bezout matrices,” IEEE Trans. Aut. Contr. AC-23 (1978) 1043–1047.

    Article  Google Scholar 

  31. D. Youla, J. Bongiorno and C. Lu, “Single loop feedback stabilization of linear multivariable dynamic plants,” Automatica 10 (1974) 159–173.

    Article  Google Scholar 

  32. R. Saeks and J. J. Murray, “Fractional representation, algebraic geometry, and the simultaneous stabilization problem,” IEEE Trans. Aut. Control, AC-27 (1982), 895–903.

    Article  Google Scholar 

  33. B. K. Ghosh and C. I. Byrnes, “Simultaneous stabilization and simultaneous pole-placement by non-switching dynamic compensation,” IEEE Trans. Aut. Control AC-28 (1983) 733–741.

    Google Scholar 

  34. B. K. Ghosh, “Transcendental and interpolation methods in simultaneous stabilization and simultaneous partial pole placement problems,” SIAM J. Control and Opt. 24 (1986) 1091–1109.

    Article  Google Scholar 

  35. E. J. Davison and S.-H. Wang, “On pole-assignment in linear multivariable systems using output feedback,” IEEE Trans. Aut. Contr. AC-20 (1975) 516–518.

    Article  Google Scholar 

  36. R. Rado, “A theorem on independence relations,” Quart J. Math 13 (1962) 83–89.

    Google Scholar 

  37. C. I. Byrnes and P. K. Stevens, “Global properties of the root-locus map,” in Feedback Control of Linear and Nonlinear Systems (D. Hinrichsen and A. Isidori, eds.), Springer-Verlag Lecture Notes in Control and Information Sciences 39, Berlin, 1982.

    Google Scholar 

  38. D. Mumford, Algebraic Geometry I: Complex Projective Varieties, Springer-Verlag, NY, 1976.

    Google Scholar 

  39. I. R. Shafarevich, Basic Algebraic Geometry, Springer-Verlag, NY, 1974.

    Google Scholar 

  40. X.-C. Wang, “Geometric inverse eigenvalue problems,” Computation and Control (K. Bowers and J. Lund, eds.) Birkhäuser-Boston, 1989.

    Google Scholar 

  41. X.-C. Wang, Ph.D. dissertation, Arizona State University, 1989.

    Google Scholar 

  42. G. D. Forney, “Minimal bases of rational vector spaces with applications to multivariable linear systems,” SIAM J. Control 13 (1975) 493–520.

    Article  Google Scholar 

  43. C. I. Byrnes, “Algebraic and geometric aspects of the analysis of feedback systems,” in Geometric Methods in Linear Systems Theory (C. I. Byrnes and C. F. Martin, eds.), D. Reidel, Dordrecht 1980, 85–124.

    Google Scholar 

  44. C. Giannakopoulis and N. Karcanias, “Pole assignment of strictly proper and proper linear systems by constant output feedback,” Int. J. Control 42 (1985), 543–565.

    Google Scholar 

  45. N. Karcanias and C. Giannakopoulis, “Grassmann matrices, decomposability of multivectors and the determinantal assignment problem,” Linear Circuits, Systems and Signal Processing: Theory and Applications (C. I. Byrnes, C. F. Martin and R. Sacks, eds.), North-Holland, 1988, 307–312.

    Google Scholar 

  46. D. Mumford, Introduction to Algebraic Geometry, Harvard Univ., 1964.

    Google Scholar 

  47. N. Jacobson, Lectures in Abstract Algebra Vol. I, Van Nostrand, New York, 1953.

    Google Scholar 

  48. C. Delzell, Ph.D. Dissertation, Stanford Univ., 1980.

    Google Scholar 

  49. B. Kostant, “Lie group representations on polynomial rings,” Amer. J. Math. 85 (1963), 327–404.

    Google Scholar 

  50. J. M. Schumacher, “Almost stabilizability subspaces and high gain feedback,” IEEE Trans. Aut. Control AC-29 (1984), 620–629.

    Article  Google Scholar 

  51. H. Schubert, “Anzahlbestimmungen für lineare Räume beliebiger Dimension,” Acta Math 8 (1886), 97–118.

    Google Scholar 

  52. P. Griffiths and J. Harris, Principles of Algebraic Geometry, J. Wiley and Sons, New York, 1978.

    Google Scholar 

  53. S. L. Kleiman, “Problem 15. Rigorous foundation of Schubert's enumerative calculus,” Proc. of Symp. in Pure Math., Vol. XXVIII, Amer. Math. Soc., Providence, 1976.

    Google Scholar 

  54. F. J. Drexler, “A homotopy method for the calculation of all zeroes of zero dimensional polynomial ideals,” in Continuation Methods (H. Wacker, ed.), Academic Press, NY, 1978, 69–93.

    Google Scholar 

  55. Continuation Methods (H. Wacker, ed.), Academic Press, NY, 1978.

    Google Scholar 

  56. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers 5th ed., Oxford, 1979.

    Google Scholar 

  57. E. Artin, Galois Theory, Univ. of Notre Dame Press, Notre Dame, 1971.

    Google Scholar 

  58. S. Lang, Algebra, Addison-Wesley, Reading, MA, 1971.

    Google Scholar 

  59. J. Harris, “Galois Groups of Enumerative Problems,” Duke Math. J. 46 (1979), 685–724.

    Article  Google Scholar 

  60. L. Ljusternik and L. Šnirel'mann, Méthodes Topologiques dans les Problèmes Variationnels, Hermann, Paris, 1934.

    Google Scholar 

  61. C. I. Byrnes, “On the stabilizability of multivariable systems and the Ljusternik-Šnirel'mann category of real Grassmannians,” Systems and Control Letters 3 (1983), 255–262.

    Article  Google Scholar 

  62. S. Eilenberg, “Sur un théorème topologique de M.L. Schnirelmann,” Mat. Sb 1 (1936), 557–559.

    Google Scholar 

  63. H. I. Hiller, “On the height of the first Stiefel-Whitney class,” Proc. Amer. Math. Soc. 79 (1980), 495–498.

    Google Scholar 

  64. R. E. Stong, “Cup products in Grassmannians,” Topology and its Applications 13 (1982), 103–113.

    Article  Google Scholar 

  65. I. Berstein, “On the Ljusternik-Šchnirel'mann category of Grassmannians,” Math. Proc. Camb. Phil. Soc. 79 (1976), 129–134.

    Google Scholar 

  66. C. I. Brynes, “Control theory, inverse spectral problems, and real algebraic geometry,” Diff. Geom. Methods in Control Theory (R. W. Brockett, R. S. Millman and H. J. Sussmann, eds.) Birkhäuser, Boston, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hendrik Nijmeijer Johannes M. Schumacher

Additional information

Dedicated, in homage, to my collaborator, friend and teacher, Jan Willems

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this chapter

Cite this chapter

Byrnes, C.I. (1989). Pole assignment by output feedback. In: Nijmeijer, H., Schumacher, J.M. (eds) Three Decades of Mathematical System Theory. Lecture Notes in Control and Information Sciences, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0008458

Download citation

  • DOI: https://doi.org/10.1007/BFb0008458

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51605-7

  • Online ISBN: 978-3-540-46709-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics