Preview
Unable to display preview. Download preview PDF.
Bibliography
G. B. Airy, “On the regulator of the clock-work for effecting uniform movement of equatoreals,” Memoirs of the Royal Astronomical Society 11 (1840) 249–267.
G. B. Airy, “Supplement to the paper ‘On the regulator of the clock-work for effecting uniform movement of equatoreals,'” Memoirs of the Royal Astronomical Society 20 (1851) 115–119.
J. C. Maxwell, “On governors,” Proc. Royal Society London 16 (1868) 270–283.
R. E. Kalman, “Algebraic geometric description of the class of linear systems of constant dimension,” 8th Annual Princeton Conference on Information Sciences and Systems, Princeton, NJ, 1974.
M. Hazewinkel and R. E. Kalman, “On invariants, canonical forms and moduli for linear, constant, finite-dimensional dynamical systems,” in Proc. of CNR-CISM Symp. on Alg. Sys. Th., Udine (1975), Lect. Notes in Econ. Math. Sys. Th., Vol. 131, Springer-Verlag, Heidelberg, 1976, 48–60.
J. M. C. Clark, “The consistent selection of local coordinates in linear system identification,” Proc. JACC, Purdue U., 1976.
C. I. Byrnes, “On the moduli space for linear dynamical systems,” in Proc. of 1976 NASA-Ames Conference on Geometric Control Theory, (C. F. Martin and R. Hermann, eds.) Math. Sci. Press, 1977, 229–276.
E. J. Davison and S.-H. Wang, “Properties of linear time-invariant multivariable systems subject to arbitrary output and state feedback,” IEEE Trans. Aut. Control 18 (1973) 24–32.
B. D. O. Anderson, N. K. Bose and E. I. Jury, “Output feedback stabilization and related problems-solution via decision algebra methods,” IEEE Trans. Aut. Control, AC-20 (1975) 53–66.
I. Postlethwaite and A. G. J. Mac Farlane, “A complex variable approach to the analysis of linear multivariable feedback systems,” Lecture Notes in Control and Inf. Sciences 12 Springer-Verlag, New York 1979.
R. Hermann and C. F. Martin, “Applications of algebraic geometry to system theory-Part I,” IEEE Trans. Aut. Control, AC-22 (1977) 19–25.
C. F. Martin and R. Hermann, “Applications of algebraic geometry to system theory: The McMillan degree and Kronecker indices as topological and holomorphic invariants,” SIAM J. Control 16 (1978) 743–755.
R. Hermann and C.F. Martin, “Applications of algebraic geometry to system theory; Part II: Feedback and pole-placement for linear Hamiltonian systems,” Proc. of IEEE 65 (1977) 841–848.
H. Kimura, “Pole assignment by gain output feedback,” IEEE Trans. Aut. Control AC-20 (1975) 509–516.
J. C. Willems and W. H. Hesselink, “Generic properties of the pole-placement problem,” Proc. of the 7th IFAC Congress (1978) 1725–1729.
R. W. Brockett and C. I. Byrnes, “Multivariable Nyquist criteria, root loci and pole placement: A geometric viewpoint,” IEEE Trans. Aut. Control AC-26 (1981) 271–284.
T. E. Djaferis, “Generic pole assignment using dynamic output feedback,” Int. J. Control 37 (1983) 127–144.
H. Seraji, “Design of pole placement compensators for multivariable systems,” Automatica 16 (1980) 335–338.
P. K. Stevens, Algebro-Geometric Methods for Linear Multivariable Feedback Systems, Ph.D. Dissertation, Harvard University, 1982.
M. Vidyasagar and N. Viswanadhan, “Algebraic design techniques for reliable stabilization,” IEEE Trans. Aut. Cont. AC-27 (1982) 1085–1095.
B. K. Ghosh, “Simultaneous stabilization and pole-placement of a multimode linear dynamical system,” Ph.D. dissertation, Harvard Univ., 1983.
M. L. J. Hautus, “Stabilization, controllability, and observability of linear autonomous systems,” Proc. Kon. Nederl. Akadamie van Wetenschappen-Amsterdam, Series A, 73 (1970) 448–455.
J. Rosenthal, “Tuning natural frequencies by output feedback,” Computation and Control (K. Bowers and J. Lund, eds.) Birkhäuser, Boston, 1989.
A. S. Morse, W. A. Wolovich and B. D. O. Anderson, “Generic pole assignment: Preliminary results,” Proc. 20th IEEE Conf. on Decision and Control, San Diego, 1981.
C. I. Byrnes and B. D. O. Anderson, “Output feedback and generic stabilizability,” SIAM J. on Control 22 (1984) 362–380.
D. F. Delchamps, State Space and Input-Output Linear Systems, Springer-Verlag, New York, 1988.
C. I. Byrnes, “On the control of certain infinite dimensional systems by algebrogeometric techniques,” Amer. J. Math. 100 (1978) 1333–1381.
F. M. Brasch and J. B. Pearson, “Pole placement using dynamic compensation,” IEEE Trans. Aut. Control AC-15 (1970) 34–43.
C. I. Byrnes and P. K. Stevens, “Pole placement by static and dynamic output feedback,” Proc. of 21st IEEE Conf. on Dec. and Control Orlando, 1982.
R. R. Bitmead, S. Y. Kung, B. D. O. Anderson and T. Kailath, “Greatest common divisors via generalized Sylvester and Bezout matrices,” IEEE Trans. Aut. Contr. AC-23 (1978) 1043–1047.
D. Youla, J. Bongiorno and C. Lu, “Single loop feedback stabilization of linear multivariable dynamic plants,” Automatica 10 (1974) 159–173.
R. Saeks and J. J. Murray, “Fractional representation, algebraic geometry, and the simultaneous stabilization problem,” IEEE Trans. Aut. Control, AC-27 (1982), 895–903.
B. K. Ghosh and C. I. Byrnes, “Simultaneous stabilization and simultaneous pole-placement by non-switching dynamic compensation,” IEEE Trans. Aut. Control AC-28 (1983) 733–741.
B. K. Ghosh, “Transcendental and interpolation methods in simultaneous stabilization and simultaneous partial pole placement problems,” SIAM J. Control and Opt. 24 (1986) 1091–1109.
E. J. Davison and S.-H. Wang, “On pole-assignment in linear multivariable systems using output feedback,” IEEE Trans. Aut. Contr. AC-20 (1975) 516–518.
R. Rado, “A theorem on independence relations,” Quart J. Math 13 (1962) 83–89.
C. I. Byrnes and P. K. Stevens, “Global properties of the root-locus map,” in Feedback Control of Linear and Nonlinear Systems (D. Hinrichsen and A. Isidori, eds.), Springer-Verlag Lecture Notes in Control and Information Sciences 39, Berlin, 1982.
D. Mumford, Algebraic Geometry I: Complex Projective Varieties, Springer-Verlag, NY, 1976.
I. R. Shafarevich, Basic Algebraic Geometry, Springer-Verlag, NY, 1974.
X.-C. Wang, “Geometric inverse eigenvalue problems,” Computation and Control (K. Bowers and J. Lund, eds.) Birkhäuser-Boston, 1989.
X.-C. Wang, Ph.D. dissertation, Arizona State University, 1989.
G. D. Forney, “Minimal bases of rational vector spaces with applications to multivariable linear systems,” SIAM J. Control 13 (1975) 493–520.
C. I. Byrnes, “Algebraic and geometric aspects of the analysis of feedback systems,” in Geometric Methods in Linear Systems Theory (C. I. Byrnes and C. F. Martin, eds.), D. Reidel, Dordrecht 1980, 85–124.
C. Giannakopoulis and N. Karcanias, “Pole assignment of strictly proper and proper linear systems by constant output feedback,” Int. J. Control 42 (1985), 543–565.
N. Karcanias and C. Giannakopoulis, “Grassmann matrices, decomposability of multivectors and the determinantal assignment problem,” Linear Circuits, Systems and Signal Processing: Theory and Applications (C. I. Byrnes, C. F. Martin and R. Sacks, eds.), North-Holland, 1988, 307–312.
D. Mumford, Introduction to Algebraic Geometry, Harvard Univ., 1964.
N. Jacobson, Lectures in Abstract Algebra Vol. I, Van Nostrand, New York, 1953.
C. Delzell, Ph.D. Dissertation, Stanford Univ., 1980.
B. Kostant, “Lie group representations on polynomial rings,” Amer. J. Math. 85 (1963), 327–404.
J. M. Schumacher, “Almost stabilizability subspaces and high gain feedback,” IEEE Trans. Aut. Control AC-29 (1984), 620–629.
H. Schubert, “Anzahlbestimmungen für lineare Räume beliebiger Dimension,” Acta Math 8 (1886), 97–118.
P. Griffiths and J. Harris, Principles of Algebraic Geometry, J. Wiley and Sons, New York, 1978.
S. L. Kleiman, “Problem 15. Rigorous foundation of Schubert's enumerative calculus,” Proc. of Symp. in Pure Math., Vol. XXVIII, Amer. Math. Soc., Providence, 1976.
F. J. Drexler, “A homotopy method for the calculation of all zeroes of zero dimensional polynomial ideals,” in Continuation Methods (H. Wacker, ed.), Academic Press, NY, 1978, 69–93.
Continuation Methods (H. Wacker, ed.), Academic Press, NY, 1978.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers 5th ed., Oxford, 1979.
E. Artin, Galois Theory, Univ. of Notre Dame Press, Notre Dame, 1971.
S. Lang, Algebra, Addison-Wesley, Reading, MA, 1971.
J. Harris, “Galois Groups of Enumerative Problems,” Duke Math. J. 46 (1979), 685–724.
L. Ljusternik and L. Šnirel'mann, Méthodes Topologiques dans les Problèmes Variationnels, Hermann, Paris, 1934.
C. I. Byrnes, “On the stabilizability of multivariable systems and the Ljusternik-Šnirel'mann category of real Grassmannians,” Systems and Control Letters 3 (1983), 255–262.
S. Eilenberg, “Sur un théorème topologique de M.L. Schnirelmann,” Mat. Sb 1 (1936), 557–559.
H. I. Hiller, “On the height of the first Stiefel-Whitney class,” Proc. Amer. Math. Soc. 79 (1980), 495–498.
R. E. Stong, “Cup products in Grassmannians,” Topology and its Applications 13 (1982), 103–113.
I. Berstein, “On the Ljusternik-Šchnirel'mann category of Grassmannians,” Math. Proc. Camb. Phil. Soc. 79 (1976), 129–134.
C. I. Brynes, “Control theory, inverse spectral problems, and real algebraic geometry,” Diff. Geom. Methods in Control Theory (R. W. Brockett, R. S. Millman and H. J. Sussmann, eds.) Birkhäuser, Boston, 1982.
Author information
Authors and Affiliations
Editor information
Additional information
Dedicated, in homage, to my collaborator, friend and teacher, Jan Willems
Rights and permissions
Copyright information
© 1989 Springer-Verlag
About this chapter
Cite this chapter
Byrnes, C.I. (1989). Pole assignment by output feedback. In: Nijmeijer, H., Schumacher, J.M. (eds) Three Decades of Mathematical System Theory. Lecture Notes in Control and Information Sciences, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0008458
Download citation
DOI: https://doi.org/10.1007/BFb0008458
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-51605-7
Online ISBN: 978-3-540-46709-0
eBook Packages: Springer Book Archive