Abstract
The compact closed bicategory Span of spans of reflexive graphs is described and it is interpreted as an algebra for constructing specifications of concurrent systems. We describe a procedure for associating to any Place/Transition system Ω an expression Ψ Ω in the algebra Span. The value of this expression is a system whose behaviours are the same as those of the P/T system. Furthermore, along the lines of Penrose's string diagrams, a geometry is associated to the expression Ω which is essentially the same geometry as that usually associated to the net underlying Ω.
Preview
Unable to display preview. Download preview PDF.
Bibliography
Abramsky S., Interaction Categories (extended abstract), in: Theory and Formal Methods Workshop, Springer-Verlag (1993).
A. Arnold, Finite transition systems, Prentice Hall, 1994.
J. Bènabou, Introduction to bicategories, in: Reports of the Midwest Category Seminar, Lecture Notes in Mathematics 47, pages 1–77, Springer-Verlag, 1967.
Bloom S., Sabadini N, Walters RFC, Matrices, machines and behaviors, Applied Categorical Structures 4 (1996) 343–360.
Cockett J.R.B. and Spooner D.A., SProc Categorically, in: Proceedings of CONCUR '94, Springer-Verlag (1994).
A. Carboni and R.F.C. Walters, Cartesian Bicategories I, Journal of Pure and Applied Algebra, 49, pages 11–32, 1987.
Genrich H.J., Predicate/Transition nets, in: Petri nets, LNCS 254 Springer-Verlag (1986) 207–247.
Jensen K., Coloured Petri nets, in: Petri nets, LNCS 254 Springer-Verlag (1986) 248–299.
Joyal A., Nielsen M. and Winskel G., Bisimulation and open maps, in: Proceedings of the Eight Symposium on Logic in Computer Science, IEEE (1993).
Joyal A. and Street R., The geometry of tensor calculus I, in: Advances in Math. 88 (1991) 55–113.
Joyal A., Street R. and Verity D., Traced monoidal categories, in: Math. Proc. Camb. Phil. Soc. 119 (1996) 447–468.
Katis P., Categories and bicategories of processes, PhD Thesis, University of Sydney (1996).
Katis P, Sabadini N, Walters RFC, The bicategory of circuits, Computing: Australian Theory Seminar, UTS, Sydney (1994).
Katis P, Sabadini N, Walters RFC, Bicategories of processes, Journal of Pure and Applied Algebra, 115, no.2, pp 141–178, 1997.
Katis P, Sabadini N, Walters RFC, Span(Graph): A categorical algebra of transition systems, LLNCS (this volume).
Kelly G.M. and Laplaza M.L., Coherence for compact closed categories, in: Journal of Pure and Applied Algebra 19 (1980) 193–213.
S. Mac Lane, Categories for the working mathematician, Springer Verlag, 1970.
Milner R., Communication and Concurrency, Prentice Hall International (1989).
Meseguer J. and Montanari U., Petri nets are monoids, in: Information and Computation, 88 (2) 105–155 (1990).
Mauri G., Sabadini N., Shammah S. and Walters R.F.C., On distributive automata, asynchronous automata and Petri nets, Preprint, 1995.
R. Penrose, Applications of negative dimensional torsors, in Combinatorial Mathematics and its applications, (D. J. A. Welsh, Ed.) pp. 221–244, Academic Press, New York, 1971.
Reisig W., Place/Transition systems, in: Petri nets, LNCS 254 Springer-Verlag (1986) 117–141.
Sabadini N. and Walters R.F.C., On functions and processors: an automata-theoretic approach to concurrency through distributive categories, School of Mathematics and Statistics Research Reports, University of Sydney, (93–7), 1993.
Sabadini N., Walters R.F.C., Weld Henry, Distributive automata and asynchronous circuits, Category Theory and Computer Science 5, Amsterdam, 28–32, 1993.
N. Sabadini and R.F.C. Walters, On functions and processors: an automata-theoretic approach to concurrency through distributive categories, School of Mathematics and Statistics Research Reports, University of Sydney, (93–7), 1993.
Thiagarajan P. S., Elementary net systems, in: Petri nets, LNCS 254 Springer-Verlag (1986) 26–59.
R.F.C. Walters, Categories and Computer Science, Carslaw Publications 1991, Cambridge University Press 1992.
R.F.C. Walters, An imperative language based on distributive categories, Mathematical Structures in Computer Science, 2:249–256, 1992.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Katis, P., Sabadini, N., Walters, R.F.C. (1997). Representing place/transition nets in Span(Graph). In: Johnson, M. (eds) Algebraic Methodology and Software Technology. AMAST 1997. Lecture Notes in Computer Science, vol 1349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0000480
Download citation
DOI: https://doi.org/10.1007/BFb0000480
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63888-9
Online ISBN: 978-3-540-69661-2
eBook Packages: Springer Book Archive