Generalized tableau systems for intermediate propositional logics | SpringerLink
Skip to main content

Generalized tableau systems for intermediate propositional logics

  • Contributed Papers
  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 1997)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1227))

Abstract

Given an intermediate propositional logic L (obtained by adding to intuitionistic logic INT a single axiom-scheme), a pseudo tableau system for L can be given starting from any intuitionistic tableau system and adding a rule which allows to insert in any line of a proof table suitable T-signed instances of the axiom-scheme. In this paper we study some sufficient conditions from which, given a well formed formula H, the search for these instances can be restricted to a suitable finite set of formulae related to H. We illustrate our techniques by means of some known logics, namely, the logic D of Dummett, the logics PR k (k≥1) of Nagata, the logics FIN m (m≥1), the logics G n (n≥1) of Gabbay and de Jongh, and the logic KP of Kreisel and Putnam

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic Logic, 57(3):795–807, 1992.

    Google Scholar 

  2. M. Ferrari and P. Miglioli. Counting the maximal intermediate constructive logics. Journal of Symbolic Logic, 58(4):1365–1401, 1993.

    Google Scholar 

  3. M. Ferrari and P. Miglioli. A method to single out maximal intermediate propositional logics with the disjunction property I. Annals of Pure and Applied Logic, 76:1–46, 1995.

    Google Scholar 

  4. M. Ferrari and P. Miglioli. A method to single out maximal intermediate propositional logics with the disjunction property II. Annals of Pure and Applied Logic, 76:117–168, 1995.

    Google Scholar 

  5. M.C. Fitting. Intuitionistic Logic, Model Theory and Forcing. North-Holland, 1969.

    Google Scholar 

  6. D.M. Gabbay. The decidability of Kreisel-Putnam system. Journal of Symbolic Logic, 35:431–437, 1970.

    Google Scholar 

  7. D.M. Gabbay. Semantical Investigations in Heyting's Intuitionistic Logic. Reidel, Dordrecht, 1981.

    Google Scholar 

  8. D.M. Gabbay and D.H.J. de Jongh. A sequence of decidable finitely axiomatizable intermediate logics with the disjunction property. Journal of Symbolic Logic, 39:67–78, 1974.

    Google Scholar 

  9. J. Hudelmaier. An o(n log n)-space decision procedure for intuitionistic propositional logic. Journal of Logic and Computation, 3(1):63–75, 1993.

    Google Scholar 

  10. G. Kreisel and H. Putnam. Eine Unableitbaxkeitsbeweismethode für den Intuitionistischen Aussagenkalkül. Archiv für Mathematische Logik und Grundlagenforschung, 3:74–78, 1957.

    Google Scholar 

  11. J. Lukasiewicz. On the intuitionistic theory of deduction. Indagationes Mathematicae, 14:69–75, 1952.

    Google Scholar 

  12. P. Miglioli. An infinite class of maximal intermediate propositional logics with the disjunction property. Archive for Mathematical Logic, 31(6):415–432, 1992.

    Google Scholar 

  13. P. Miglioli, U. Moscato, and M. Ornaghi. How to avoid duplications in a refutation system for intuitionistic logic and Kuroda logic. In K. Broda, M. D'Agostino, R. Goré, R. Johnson, and S. Reeves, editors, Proceedings of 3rd Workshop on Theorem Proving with Analytic Tableaux and Related Methods. Abingdon, U.K., May 4–6, 1994. Imperial College of Science, Technology and Medicine TR-94/5, 1994, pp. 169–187.

    Google Scholar 

  14. P. Miglioli, U. Moscato, and M. Ornaghi. An improved refutation system for intuitionistic predicate logic. Journal of Automated Reasoning, 12:361–373, 1994.

    Google Scholar 

  15. P. Miglioli, U. Moscato, and M. Ornaghi. Refutation systems for propositional modal logics. In P. Baumgartner, R. Hähnle, and J. Posegga, editors, Theorem Proving with Analytic Tableaux and Related Methods: 4th International Workshop, Schloss Rheinfels, St. Goar, Germany, volume 918 of LNAI, pages 95–105. Springer-Verlag, 1995.

    Google Scholar 

  16. P. Miglioli, U. Moscato, and M. Ornaghi. Avoiding duplications in tableau systems for intuitionistic and Kuroda logics. L.J. of the IGPL, 5(1):145–167, 1997.

    Google Scholar 

  17. P. Minari. Indagini semantiche sulle logiche intermedie proposizionali. Bibliopolis, 1989.

    Google Scholar 

  18. S. Nagata. A series of successive modifications of Peirce's rule. Proceedings of the Japan Academy, Mathematical Sciences, 42:859–861, 1966.

    Google Scholar 

  19. H. Ono. Kripke models and intermediate logics. Publications of the Research Institute for Mathematical Sciences, Kyoto University, 6:461–476, 1970.

    Google Scholar 

  20. K. Sasaki. The simple substitution property of the intermediate propositional logics on finite slices. Studia Logica, 52:41–62, 1993.

    Google Scholar 

  21. C.A. Smorynski. Applications of Kripke models. In A.S. Troelstra, editor, Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, volume 344 of Lecture Notes in Mathematics. Springer-Verlag, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Didier Galmiche

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avellone, A., Moscato, U., Miglioli, P., Ornaghi, M. (1997). Generalized tableau systems for intermediate propositional logics. In: Galmiche, D. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 1997. Lecture Notes in Computer Science, vol 1227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027404

Download citation

  • DOI: https://doi.org/10.1007/BFb0027404

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62920-7

  • Online ISBN: 978-3-540-69046-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics