Abstract
Given an intermediate propositional logic L (obtained by adding to intuitionistic logic INT a single axiom-scheme), a pseudo tableau system for L can be given starting from any intuitionistic tableau system and adding a rule which allows to insert in any line of a proof table suitable T-signed instances of the axiom-scheme. In this paper we study some sufficient conditions from which, given a well formed formula H, the search for these instances can be restricted to a suitable finite set of formulae related to H. We illustrate our techniques by means of some known logics, namely, the logic D of Dummett, the logics PR k (k≥1) of Nagata, the logics FIN m (m≥1), the logics G n (n≥1) of Gabbay and de Jongh, and the logic KP of Kreisel and Putnam
Preview
Unable to display preview. Download preview PDF.
References
R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic Logic, 57(3):795–807, 1992.
M. Ferrari and P. Miglioli. Counting the maximal intermediate constructive logics. Journal of Symbolic Logic, 58(4):1365–1401, 1993.
M. Ferrari and P. Miglioli. A method to single out maximal intermediate propositional logics with the disjunction property I. Annals of Pure and Applied Logic, 76:1–46, 1995.
M. Ferrari and P. Miglioli. A method to single out maximal intermediate propositional logics with the disjunction property II. Annals of Pure and Applied Logic, 76:117–168, 1995.
M.C. Fitting. Intuitionistic Logic, Model Theory and Forcing. North-Holland, 1969.
D.M. Gabbay. The decidability of Kreisel-Putnam system. Journal of Symbolic Logic, 35:431–437, 1970.
D.M. Gabbay. Semantical Investigations in Heyting's Intuitionistic Logic. Reidel, Dordrecht, 1981.
D.M. Gabbay and D.H.J. de Jongh. A sequence of decidable finitely axiomatizable intermediate logics with the disjunction property. Journal of Symbolic Logic, 39:67–78, 1974.
J. Hudelmaier. An o(n log n)-space decision procedure for intuitionistic propositional logic. Journal of Logic and Computation, 3(1):63–75, 1993.
G. Kreisel and H. Putnam. Eine Unableitbaxkeitsbeweismethode für den Intuitionistischen Aussagenkalkül. Archiv für Mathematische Logik und Grundlagenforschung, 3:74–78, 1957.
J. Lukasiewicz. On the intuitionistic theory of deduction. Indagationes Mathematicae, 14:69–75, 1952.
P. Miglioli. An infinite class of maximal intermediate propositional logics with the disjunction property. Archive for Mathematical Logic, 31(6):415–432, 1992.
P. Miglioli, U. Moscato, and M. Ornaghi. How to avoid duplications in a refutation system for intuitionistic logic and Kuroda logic. In K. Broda, M. D'Agostino, R. Goré, R. Johnson, and S. Reeves, editors, Proceedings of 3rd Workshop on Theorem Proving with Analytic Tableaux and Related Methods. Abingdon, U.K., May 4–6, 1994. Imperial College of Science, Technology and Medicine TR-94/5, 1994, pp. 169–187.
P. Miglioli, U. Moscato, and M. Ornaghi. An improved refutation system for intuitionistic predicate logic. Journal of Automated Reasoning, 12:361–373, 1994.
P. Miglioli, U. Moscato, and M. Ornaghi. Refutation systems for propositional modal logics. In P. Baumgartner, R. Hähnle, and J. Posegga, editors, Theorem Proving with Analytic Tableaux and Related Methods: 4th International Workshop, Schloss Rheinfels, St. Goar, Germany, volume 918 of LNAI, pages 95–105. Springer-Verlag, 1995.
P. Miglioli, U. Moscato, and M. Ornaghi. Avoiding duplications in tableau systems for intuitionistic and Kuroda logics. L.J. of the IGPL, 5(1):145–167, 1997.
P. Minari. Indagini semantiche sulle logiche intermedie proposizionali. Bibliopolis, 1989.
S. Nagata. A series of successive modifications of Peirce's rule. Proceedings of the Japan Academy, Mathematical Sciences, 42:859–861, 1966.
H. Ono. Kripke models and intermediate logics. Publications of the Research Institute for Mathematical Sciences, Kyoto University, 6:461–476, 1970.
K. Sasaki. The simple substitution property of the intermediate propositional logics on finite slices. Studia Logica, 52:41–62, 1993.
C.A. Smorynski. Applications of Kripke models. In A.S. Troelstra, editor, Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, volume 344 of Lecture Notes in Mathematics. Springer-Verlag, 1973.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Avellone, A., Moscato, U., Miglioli, P., Ornaghi, M. (1997). Generalized tableau systems for intermediate propositional logics. In: Galmiche, D. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 1997. Lecture Notes in Computer Science, vol 1227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027404
Download citation
DOI: https://doi.org/10.1007/BFb0027404
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-62920-7
Online ISBN: 978-3-540-69046-7
eBook Packages: Springer Book Archive