Modeling long term memory effects in microwave power amplifiers for system level simulations | Annals of Telecommunications Skip to main content
Log in

Modeling long term memory effects in microwave power amplifiers for system level simulations

Modélisation des Effets de Mémoire à Long Terme Dans les Amplificateurs de Puissance Microondes Pour la Simulation Système

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

Accurate and dynamic behavioral models of SSPAS become of prime importance in system level analysis and design of modern communication and detection systems. This paper describes a new method to characterize and reproduce nonlinear memory effects in behavioral models ofSspas. We highlight, in a first section, the detailed mathematical development, whose the starting point is the Volterra series expansion, and ends to the nonlinear impulse response notion. The new model extraction relies on envelope transient simulations or time-domain measurements of complex envelopes at externDut reference accesses. This modeling technique is simple and enables a good prediction of nonlinear memory effects and especially long term memory effects and nonlinear transient behaviors. Simulations and measurements based extractions of this model are presented through significant amplifier examples.

Résumé

Les modèles comportementaux dynamiques précis d’amplificateurs de puissance deviennent de première importance dans l’analyse et la conception de systèmes de détection et de communication modernes. Ce papier décrit une nouvelle méthode pour caractériser et reproduire les effets de mémoire non linéaires dans les amplificateurs de puissance. Nous présentons dans une première section un développement mathématique détaillé dont le point de départ est le développement en séries de Volterra et qui se conclut par la notion de réponse impulsionnelle non linéaire. L’extraction du nouveau modèle repose sur des simulations en transitoire d’enveloppe ou des mesures dans le domaine temporel des enveloppes complexes présentes aux accès du dispositif sous test (Dst). Cette technique de modélisation est simple et permet une bonne prédiction des effets de mémoire non linéaires et notamment des effets de mémoire à long terme et des comportements transitoires non linéaires. Des extractions de ce modèle basées sur des simulations et des mesures expérimentales sont présentées aux travers d’exemples d’amplificateurs significatifs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roychowdhury (J.), “Reduced order modeling of time varying systems”,IEEE Transactions on Circuits and Systems — II: Analog and Digital Signal Processing.,46, no 10, pp. 1273–1288, Oct. 1999.

    Article  Google Scholar 

  2. Gad (E.), Khazaka (R.), Nakhla (M.S.), Griffith (R.), “A circuit reduction technique for finding the steady state solution of nonlinear circuits”,IEEE Transactions on Microwave Theory and Techniques,48, no 12, pp. 2389–2396, Dec. 2000.

    Article  Google Scholar 

  3. Phillips (J.R.), “Projection based approaches for model reduction of weakly nonlinear, time varying systems”,IEEE Transactions Computer-Aided Design of Integrated Circuits and Systems,22, no 2, pp. 171–187, Feb. 2003.

    Article  Google Scholar 

  4. Rewienski (M.) andWhite (J.), “A trajectory piecewise linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices”,IEEE Transactions Computer-Aided Design of Integrated Circuits and Systems,22, no 2, pp. 155–170, Feb. 2003.

    Article  Google Scholar 

  5. Saleh (A.A.M.), “Frequency-independent and frequency-dependent models ofTwta amplifiers”,IEEE Transactions on Communications,29, no 11, pp. 1715–1720, Nov. 1981.

    Article  Google Scholar 

  6. Abuelma’atti (M.T.), “Frequency dependent non linear quadrature model forTwt amplifiers”,IEEE Transactions on Communications,32, no 8, pp 982–985, Aug. 1984.

    Article  MathSciNet  Google Scholar 

  7. Bösch (W.),Gatti (G.), “Measurement and Simulation of Memory Effects in Predistorsion Linearizers”,IEEE Transactions on Microwave Theory and Techniques,37, no 12, Dec. 1989.

  8. Asbeck (P.M.),Kobayashi (H.),Iwamoto (M.),Hanington (G.),Nam (S.),Larson (L.E.), “Augmented Behavioral Characterization for Modeling the Nonlinear Response of Power Amplifiers”,Ieee mtt Symposium — Digest, pp. 135–138, Seattle, 2002.

  9. Volterra (V.), “Theory of functionals and of integral of integro-differential equations”,Dover publications, Inc., N.Y. 1958.

    Google Scholar 

  10. Wang (T.),Brazil (T.J.), “The Estimation of Volterra Transfer Functions with Applications to rf Power Amplifier Behavior Evaluation for cdma Digital Communication”,Ieee mtt Symposium — Digest, pp. 425–428, 2000.

  11. Vassiliou (I.),Sangiovanni-Vincentelli (A.), “A Frequency-Domain, Volterra Series-Based Behavioral Simulation Tool for RF Systems”,In Proc. Custom Integrated Circuit Conference, pp. 21–24, San Diego, May 1999.

  12. De Carvalho (N.B.), Pedro (J.C.), “Large- and Small-Signal imd Behavior of Microwave Power Amplifiers”,IEEE Transactions on Microwave Theory and Techniques,47, no 12, pp. 2364–2374, Dec 1999.

    Article  Google Scholar 

  13. Mirri (D.),Filicori (F),Iuculano (G.),Pasini (G.), “A Non-Linear Dynamic Model for Performance Analysis of Large Signal Amplifiers in Communication Systems”, Proceedings 16th IEEE instrumentation measurement technology conference,Imtc, pp. 193–197, 1999.

  14. Ngoya (E.),Le Gallou (N.),Nébus (J.M.),Buret (H.),Reig (P.), “Accurate RF and Microwave System Modeling of Wide Band Nonlinear Circuits”,Ieee mtt Symposium — Digest, pp. 79–82, 2000.

  15. Le Gallou (N.),Nébus (J.M.),Ngoya (E.),Buret (H.), “Analysis of low frequency memory and Influence on Solid State HPA Intermodulation Characteristics”,Ieee mtt Symposium — Digest, pp. 979–982, 2001.

  16. Lu (K.),McIntosh (P.M.),Snowden (CM.),Pollard (R.D.), “Low Frequency Dispersion and its Influences on the Intermodulation Performances of AlGaAs/GaAsHbts”,Ieee mtt Symposium — Digest, pp. 1373–1376, 1996.

  17. Soury (A.),Ngoya (E.),Nébus (J.M.), “A New Behavioral Model taking into account Nonlinear Memory Effects and Transient Behaviors in Wideband SSPAs”,Ieee mtt Symposium — Digest, pp. 853–856, Seattle, 2002.

  18. Vuolevi (J.H.K.), Rahkonen (T.), Manninen (J.P.A.), “Measurement Technique for Characterizing memory Effects in RF Amplifiers”,IEEE Transactions on Microwave Theory and Techniques,49, no 8, pp. 1383–1389, Aug. 2001.

    Article  Google Scholar 

  19. Ku (H.), McKinley (M.D.), Stevenson Kenney (J.), “Quantifying Memory Effects in RF Power Amplifiers”,IEEE Transactions on Microwave Theory and Techniques,50, no 12, pp. 2843–2849, Dec. 2002.

    Article  Google Scholar 

  20. Clark (C.J.), Silva (C.P.), Moulthrop (A.A.), Muha (M.S.), “Power-Amplifier Characterization Using a Two-Tone Measurement”,IEEE Transactions on Microwave Theory and Techniques,50, no 6, pp. 1590–1602, June 2002.

    Article  Google Scholar 

  21. Le Gallou (N.),Ngoya (E.),Buret (H.),Barataud (D.),Nebus (J.M.), “An Improved Behavioral Modeling technique for High Power Amplifiers with Memory”,Ieee mtt Symposium — Digest, pp. 983–986, 2001.

  22. Florian (C),Filicori (F.),Mirri (D.),Brazil (T.J.),Wren (M.), “Cad Identification and Validation of a Non-Linear Dynamic Model for Performance Analysis of Large-Signal Amplifiers”,Ieee mtt Symposium — Digest, pp. 2125–2128, 2003.

  23. Ngoya (E.),Larchevèque (R.), “Envelope Transient Analysis : a new method for the transient and steady state analysis of microwave communication circuits and systems”,Ieee mtt Symposium — Digest, pp. 1365–1368, 1996.

  24. Clark (C.J.), Chrisikos (G.), Muha (M.S.), Moulthrop (A.A.), Silva (C.P.), “Time-Domain Envelope Measurement Technique with application to Wideband Power Amplifier Modeling”,ieee Transactions on Microwave Theory and Techniques,46, no 12, pp. 2531–2540, Dec 1998.

    Article  Google Scholar 

  25. Boumaiza (S.),Ghannouchi (F.M.), “An Accurate Complex Behavior Test Bed Suitable For 3G Power Amplifiers Characterization”,Ieee mtt Symposium — Digest, pp. 2241–2244, Seattle, 2002.

  26. Reveyrand (T.),Maziere (C),Nébus (J.M.),Quéré (R.),Mallet (A.),Lapierre (L.),Sombrin (J.), “A Calibrated Time-Domain Envelope Measurement System for the Behavioral Modeling of Power Amplifiers”, European Microwave Week,GaAs Conference, pp. 237–240, Oct 2002.

  27. Vlach (J.),Singhal (K.), “Computers methods for circuit analysis and design”,Van Nostrand Reinhold, 2nd edition, N.Y., 1994.

  28. Xpedion Design Systems, “GoldenGate User Manual”.

  29. Van den Broeck (T.), “Calibrated measurements of nonlinearities in narrowband amplifiers applied to inter-modulation and cross modulation compensation”,Ieee mtt Symposium — Digest, pp. 1155-1158, Orlando, May 1995.

  30. Van Moer (W.),Rolain (Y.), “Slow Dynamics : Myth or Reality?”, 59thArftg, Seattle, 2002.

  31. Soury (A.),Ngoya (E.),Nébus (J.M.),Reveyrand (T.), “Measurement based modeling of power amplifiers for reliable design of modern communication systems”,Ieee mtt Symposium — Digest, pp. 795–798, Philadelphia, 2003.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soury, A., Ngoya, E. Modeling long term memory effects in microwave power amplifiers for system level simulations. Ann. Télécommun. 60, 1488–1506 (2005). https://doi.org/10.1007/BF03219859

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03219859

Key words

Mots clés

Navigation