Abstract
The last decade has seen a tremendous interest in the field of photonic crystals. After a review of the basic properties of ideal two-dimensional photonic crystals, we describe the recent advances that lead to consider them as good candidates for a powerful control of light in future miniature photonic devices. The choice of devices is oriented in view of possible applications to high-density telecommunication optical circuits. We first mainly focus on integrated optics with 2D photonic crystals that are the most fascinating in terms of miniaturisation with existing technologies. We discuss the critical issues for minimising the propagation losses in photonic-crystal waveguides as well as the interest of high-Q cavities and the last advances in building-blocks for ultra-compact photonic integrated circuits. We also show the recent advances in microstructured fibres, that are certainly promised to be the most immediate application of photonic crystals in the real world of optical communications. Finally, we present new technologies and architectures that open the way to three-dimensional structures with the ultimate goal of a full control of light. This is followed by conclusive remarks on what photonic crystals can bring to the field of telecommunications.
Résumé
La dernière décennie a été marquée d’un intérêt sans précédent pour le domaine des cristaux photoniques. Après une brève revue des propriétés de base des cristaux photoniques bidimensionnels idéaux, nous décrivons les avancées récentes qui amènent à les considérer comme de bons candidats pour un contrôle efficace de la lumière dans les futurs dispositifs photoniques miniatures. Le choix des dispositifs est orienté en vue d’applications possibles aux circuits optiques à haute densité. En premier lieu, nous nous focalisons principalement sur l’optique intégrée avec les cristaux photoniques bidimensionnels qui sont les plus fascinants en termes de miniaturisation à partir des technologies existantes. Nous discutons en détail les points critiques pour minimiser les pertes de propagation dans les guides d’onde à cristal photonique, de même que l’intérêt des cavités à Q élevé et les dernières avancées dans la réalisation des briques de base pour des circuits photoniques intégrés ultra-compacts. Nous montrons aussi les récentes avancées dans les fibres microstructurées qui sont certainement promises à être l’application la plus immédiate des cristaux photoniques dans le monde réel des télécommunications optiques. Finalement, nous présentons des nouvelles techniques et des nouvelles architectures qui ouvrent la voie aux structures tridimensionnelles dont le but ultime est le contrôle total de la lumière. Ceci est suivi de remarques de conclusion quant aux apports possibles des cristaux photoniques au domaine des télécommunications optiques.
Similar content being viewed by others
References
Astratov (V. N.), Culshaw (I. N.), Stevenson (R. M.), Whittaker (D. M.), Skolnick (M. S.), Krauss (T. F.), Rue (R. M. D. L.),Resonant Coupling of Near-Infrared Radiation to Photonic Band Structure Waveguides, J. Lightwave Technol.,17, pp. 2050–2057, (1999).
Baba (T.), Fukaya (N.), Yonekura (J.),Observation of light propagation in photonic crystal optical waveguides with bends, Electron. Lett.,35, pp. 654–655, (1999).
Baba (T.), Motegi (A.), Iwai (T.), Fukaya (N.), Watanabe (Y.), Sakai (A.), “Light propagation characteristics of straight single line defect waveguides in photonic crystal slabs fabricated into a silicon on insulator substrate”, IEEE J. Quantum Electron.,38, pp. 743–752, (2002).
Benisty (H.),Modal analysis of optical guides with two-dimensional photonic band-gap boundaries, J. Appl. Phys.,79, pp. 7483–7492, (1996).
Benisty (H.), Gérard (J.-M.), Houdré (R.), Rarity (J.), Weisbuch (C.), Eds.,Confined Photon Systems: Fundamentals and Applications, (Springer, Heidelberg, 1999).
Benisty (H.) et al., Optical and confinement properties of two-dimensional photonic crystals, J. Lightwave Technol.,17, pp. 2063–2077, (1999).
Benisty (H.), Labilloy (D.), Weisbuch (C.), Smith (C. J. M.), Krauss (T. F.), Béraud (A.), Cassagne (D.), Jouanin (C.),Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate, Appl. Phys. Lett.,76, pp. 532–534, (2000). (T. F.),Jouanin (C.),Cassagne (D.),Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals, Optical and Quantum Electronics, accepted (dec. 2001).
Benisty (H.), Lalanne (P.), Olivier (S.), Rattier (M.), Weisbuch (C.), Smith (C. J. M.), Krauss (T. F.), Jouanin (C.), Cassagne (D.), “Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals”, Optical and Quantum Electronics,34, p. 205–215, (2002).
Benisty (H.), Olivier (S.), Weisbuch (C.), Agio (M.), Kafesaki (M.), Soukoulis (C. M.), Qiu (M.), Swillo (M.), Karlsson (A.), Jaskorzynska (B.), Moosburger (J.), Kamp (M.), Forchel (A.), Ferrini (R.), Houdré (R.), Oesterle (U.), «Models and measurements for the transmission of submicron-width waveguide bends defined in two-dimensional photonic crystals”, IEEE J. Quantum Electron.38, p. 770–785, (2002).
Berger (V.), Gauthier-Lafaye (O.), Costard (E.), “Fabrication of a 2D photonic bandgap by a holographic method”, Electron. Lett.,33, pp. 425–426, (1997).
Birner (A.), Gruning (U.), Ottow (S.), Schneider (A.), Müller (F.), Lehmann (V.), Föll (H.), Gösele (U.),Macroporous silicon: A two-dimensional photonic bandgap material suitable for the near-infrared spectral range, Phys. Status Solidi A,165, pp. 111–117, (1998).
Birner (A.), Wehrspohn (R. B.), Gösele (U.M.), Busch (K.), “Silicon-based photonic crystals”, Adv. Mater.13, pp. 377–388, (2001).
Blanco (A.), Chomski (E.), Grabtchak (S.), Ibiskate (M.), John (S.), Leonard (S. W.), Lopez (C.), Meseguer (F.), Miguez (H.), Mondia (J.P.), Ozin (G. A.), Toader (O.), Van Driel (H. M.), “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers”, Nature,405, pp. 437–440, (2000).
Braun (P.V.), Zehner (R.W.), White (C.A.), Weldon (M.K.), Kloc (C.), Patel (S.S.), Wiltzius (P.), “Epitaxial growth of high dielectric contrast three-dimensional photonic crystals”,Adv. Mater.,13, No. 10, pp. 721–724, (2001).
Bogaerts (W.) et al., Out-of-plane scattering in photonic crystals, IEEE Phot. Technol. Lett.,13, pp. 565–567, (2001).
Boroditsky (M.), Krauss (T. F.), Coccioli (R.), Vrijen (R.), Bhat (R.), Yablonovitch (E.),Light extraction from optically pumped light-emitting diode by thin-slab photonic crystal, Appl. Phys. Lett.,75, pp. 1036–1038, (1999).
Boscolo (S.), Conti (C.), Midrio (M.), Someda (C. G.), “Numerical Analysis of Propagation and Impedance Matching in 2-D Photonic Crystal Waveguides With Finite Length”, J. Lightwave Technol.,20, p.304–310, 2002.
Brunhes (T.), Boucaud (P.), Sauvage (S.), Aniel (F.), Lourtioz (J.-M.), Hernandez (C.), Campidelli (Y.), Bensahel (D.), Faini (G.), Sagnes (I.), “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition”, Appl. Phys. Lett.,77, 1822 (2000).
Campbell (M.), Scharp (D.), Harrison (M.), Denning (R.), Tuberfield (A.), “Fabrication of photonic crystals for the visible spectrum by holographic lithography”, Nature,404, pp. 53–56, (2000).
Cassagne (D.), Jouanin (C.), Bertho (D.),Hexagonal photonic band gaps, Phys. Rev.,B53, p.7134, 1996.
Cheng (C.), Scherer (A.), Arbet-Engels (V.), Yablonovitch (E.), “Lithographic band gap tuning in photonic band gap crystals”, J. of Vac. Sci. Technol. B,B14, no 6, pp. 4110–4114, (1996).
Chelnokov (A.), David (S.), Wang (K.), Marty (F.), Lourtioz (J-M.), “Near-infrared Yablonovitelike photonic crystals by focused ion beam etching of macroporous silicon”, Appl. Phys. Lett.,77, pp. 2943–2945, (2000).
Chelnokov (A.), Wang (K.), Rowson (S.), Garoche (P.), Lourtioz (J-M.), “Fabrication of 2D and 3D silicon photonic crystals by deep etching”, IEEE Journal of Selected Topics in Quantum Electronics,8, No. 4, pp. 919–927, (2002).
Chow (E.) et al., Three-dimensional control of light in a two-dimensional crystal slab, Nature,407, pp. 983–986, (2000).
Chow (E.), Lon (S. Y.), Wendt (J. R.), Johnson (S. G.), Joannopoulos (J. D.),Quantitative analysis of bending efficiency in photonic crystal waveguide bends at λ=1.55 µm wavelengths, Opt. Lett.,26, pp. 286–288, (2001).
Chutinan (A.), Okano (M.), Noda (S.), “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs”, Appl. Phys. Lett.80, pp. 1698–1700, (2002).
Cowan (A. R.), Young (J. F.),Mode matching for second-harmonic generation in photonic crystal waveguides, Phys. Rev.,B 65, 085106, (2002).
Cuisin (C.), Chelnokov (A.), Decanini (D.), Peyrade (D.), Chen (Y.), Lourtioz (J.-M.), “Submicrometer dielectric and metallic structures fabricated from resist templates”, Optical and Quantum Electronics,34, no. 1–3, pp. 13–26, (2002).
Dantec (N. L.), Benyattou (T.), Guillot (G.), Spisser (A.), Seassal (C.), Leclercq (J. L.), Viktorovitch (P.), Rondi (D.), Blondeau (R.),Tunable microcavity based on InP-Air Bragg mirrors, IEEE J. Sel. Top. in Quantum Electron.,5, pp. 111–114, (1999).
David (S.), Chelnokov (A.), Lourtioz (J.-M.), “Lateral confinement in macroporous silicon crystals”, J. Opt. A: Pure and Applied Optics,4, no 4, pp. 468–473, (2002).
D’urso (B.), Painter (O.), O’brien (J.), Tombrello (T.), Yariv (A.), Scherer (A.),Modal reflectivity in finite-depth two-dimensional photonic crystal microcavities, J. Opt. Soc. Am.,B 15, pp. 1155–1159, (1998).
Enoch (S.), Gralak (B.), Tayeb (G.), “Enhanced emission with angular confinement from photonic crystals”, Appl. Phys. Lett.,81, No. 9, pp. 1588–1591, (2002).
Fan (S.), Villeneuve (P. R.), Joannopoulos (J. D.),High extraction efficiency of spontaneous emission from slabs of photonic crystals, Phys. Rev. Lett.,78, p. 3294, (1997).
Fedeli (J-M.),Laval (S.), “Microphotonique silicium pour connexions rapides sur circuit intégré”, Revue de l’Électricité et de l’Électronique, Ree No 9, pp. 62–67 (2002).
Fehrembach (A.-L.), Enoch (S.), Sentenac (A.), “Highly directive light sources using two-dimensional photonic crystal slabs.” Appl. Phys. Lett.,79, pp. 4280–4282, (2001).
Feng (X.-P.), Arakawa (Y.),Off-plane dependence angle of photonic band gap in a two-dimensional photonic crystal, IEEE J. Quantum. Elect.,32, pp. 535–541, (1996).
Ferrini (R.), Leuenberger (D.), Mulot (M.), Qiu (M.), Moosburger (J.), Kamp (M.), Forchel (A.), Anand (S.), Houdré (R.), “Optical Study of Two-Dimensional InP-Based Photonic Crystals by Internal Light Source Technique”, IEEE J. Quantum Electron.,38, p. 786–799, (2002).
Ferrini (R.), Lombardet (B.), Wild (B.), Houdre (R), Olivier (S.), Benisty (H.), Dioudi (A.), Legouezigou (L.), Hubert (S.), Sainson (S.), Chandouineau (J.-P.), Fabre (S.), Pommereau (F.), Duan (G.-H.), “Optical characterisation of 2D InP-based photonic crystals fabricated by inductively coupled plasma etching”, Electron. Lett.,38, p. 962–964, (2002).
Ferrini (R.) Houdré (R.), Benisty (H.), Qiu (M.), Moosburger (J.), “Radiation losses in planar photonic crystals: two-dimensional representation of hole depth and shape by an imaginary dielectric constant”, J. Opt. Soc. Am.B20, pp. 469–478, (2003).
Fleming (J.G.), Lin (S.-Y.),Three-dimensional photonic crystal with a stop-band from 1.35 to 1.95 µm, Opt. Lett.,24, no 1, pp. 49–51, (1999).
Forchel (A.)et al., lasers with PBG mirrors, IPRM’99, Davos (1999).
Gadot (F.), Chelnokov (A.), De Lustrac (A.), Crozat (P.), Lourtioz (J-M.), Cassagne (D.), Jouanin (C.),Experimental demonstration of complete photonic bandgap in graphite structure, Appl. Phys. Lett.,71, pp. 1780–1782, (1997).
Golubev (V.G.), Davydov (V.Y.), Kartenko (N.F.), Kurdyukov (D.A.), Medvedev (A.V.), Pevtsov (A.B.), Scherbakov (A.V.), Shadrin (E.B.), “Phase transition-governed opal-VO2 photonic crystal”, Appl. Phys. Lett.,79, No. 14, pp. 2127–2129, (2001).
Grillet (C.) et al., Characterisation of 2D photonic crystals cavities on InP membranes, European Phys. Journal D,16, pp. 37–44 (2001).
Grüning (U.), Lehmann (V.), Ottow (S.), Busch (K.), Macroporous silicon with a complete 2D PBG centered at 5 µm, Appl. Phys. Lett.,68, pp. 747–749, (1996).
Happ (T. D.), Kamp (M.), Klopf (F.), Reithmaier (J. P.), Forchel (A.),Bent laser cavity based on 2D photonic crystal waveguide, Electron. Lett.,26, pp. 324–325, (2000).
Happ (T. D.), Markard (A.), Kamp (M.), Forchel (A.), Anand (A.), “Sigle-mode operation of coupled-cavity lasers based on two-dimensional photonic crystals”, Appl. Phys. Lett.,79, p.4091–4093, (2001).
Harvey (A.F.), Microwave Engineering, Academic Press, London, pp. 592–605, (1963).
Ho (K.), Chan (C.), Soukoulis (C.),Existence of a Photonic Gap in Periodic Dielectric Structures, Physical Review Letters, 65, No. 25, pp. 3152–3155, (1990).
Ho (K.), Chan (C.), Soukoulis (C.), Biswas (R.), Sigalas (M.),Photonic bandgaps in three dimensions: new layer by layer periodic structures, Solid State Communications, 89, pp. 413–416, (1994).
Holland (B.T.), Blanford (C.E.), Stein (A.), Science, 281, p. 538, (1998).
Imada (M.), Noda (S.), Chutinan (A.), Tokuda (T.), Murata (M.), Sasaki (G.) Coherent two-dimensional laser action in surface-emitting laser with triangular photonic crystal structure, Appl. Phys. Lett., 75, 316–318, (1999).
See the Optimistic web site of the ISE-EU program, http://www.intec.rug.ac.be/ist-optimist/pdf/network/pres_ecoc2000/
Joannopoulos (J. D.), Meade (R. D.), Winn (J. N.), Photonic Crystals, Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).
Kawai (N.), Inoue (K.), Carlsson (N.), Ikeda (N.), Sugimoto (Y.), Asakawa (K.), Takemori (T.),Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal, Phys. Rev. Lett., 86, pp. 2289–2292, (2001).
Kogelnik (H.), Shank (C. V.),Coupled wave theory of distributed feedback lasers, J. Appl. Phys., 43, pp. 2327–2335, (1972).
Kosaka (H.), Kawashima (T.), Notomi (N.), Tamamura (T.), Sato (T.), Kawakami (S.), “Superprism phenomena in photonic crystals”, Phys. Rev. B 58, p. 10096–10099, (1998).
Krauss (T. F.), De La Rue (R. M.), Brand (S.),Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths, Nature, 383, pp. 699–702, (1996).
Labilloy (D.) et al., Quantitative measurement of transmission, reflection and diffraction of two-dimensional photonic bandgap structures at near-infrared wavelengths, Phys. Rev. Lett., 79, pp. 4147–4150 (1997).
Labilloy (D.), Benisty (H.), Weisbuch (C.), Krauss (T. F.), Houdré (R.), Oesterle (U.),Use of guided spontaneous emission of a semiconductor to probe the optical properties of two-dimensional photonic crystals, Appl. Phys. Lett., 71, pp. 738–740, (1997).
Labilloy (D.), Benisty (H.), Weisbuch (C.), Krauss (T. F.), Smith (C. J. M.), Houdré (R.), Oesterle (U.),High-finesse disk microcavity based on a circular Bragg reflector, Appl. Phys. Lett., 73, pp. 1314–1316, (1998).
Labilloy (D.) et al., inFundamentals and Applications of Confined Photon Systems Benisty (H.), Gérard (J.-M.), Houdré (R.), Rarity (J.), Weisbuch (C.), Eds. (Springer, Heidelberg, 1999).
Labilloy (D.), Benisty (H.), Weisbuch (C.), Smith (C. J. M.), Krauss (T. F.), Houdré (R.), Oesterle (U.),Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using InAs quantum dots emission, Phys Rev., B59, pp. 1649–1652, (1999).
Lalanne (P.), Benisty (H.),Ultimate limits of two-dimensional photonic crystals etched through waveguides: an electromagnetic analysis, J. Appl. Phys., 89, pp. 1512–1514, (2001).
Lardenois (S.), Pascal (D.), Vivien (L.), Cassan (E.), Laval (S.), Orobtchouk (R.), Heitzmann (M.), Bouzaida (N.), Mollard (L.), “Ultralow-loss sub-micrometer Si waveguides and corner mirrors on SOI substrates”, Opt. Lett.28, pp. 1150–1152, (2003).
Laval (S.), “Optical interconnects: the challenge”, C. R. Acad. Sci. Paris, t.1, Série IV, pp. 941–949, (2000).
Lee (R. K.), Painter (O. J.), D’urso (B.), Scherer (A.), Yariv (A.),Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths, Appl. Phys. Lett., 71, PP. 1522–1524, (1999).
Lee (K.K.), Lim (D.R.), Kimerling (L.C.), “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction‰” Opt. Lett., 26, pp. 1888–1890 (2001).
Lehmann (V.), Föll (H.), “Formation mechanism and properties of electrochemically etched trenches in n-type silicon”, J. Electrochem. Soc., 137, no 2, pp. 653–659, (1990).
Leonard (S. W.), Driel (H. M. v.), Busch (K.), John (S.), Birner (A.), Li (A.-P.), Müller (F.), Gösele (U.), Lehmann (V.),Attenuation of optical transmission within the band gap of thin two-dimensional macroporous silicon photonic crystals, Appl. Phys. Lett., 75, PP. 3063–3065, (1999).
Leonard (S. W.), Driel (H. M. V.), Birner (A.), Gösele (U.), Villeneuve (P. R.),Single-mode transmission in two-dimensional macroporous silicon photonic crystal waveguides, Optics Lett., 25, pp. 1550–1552, (2000).
Letartre (X.), Seassal (C.), Grillet (C.),Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes, Appl. Phys. Lett., 79, pp.2313–2314, (2001).
Lin (S.-Y.), Fleming (J.G.), Sigalas (M. M.), Biswas (R.), Ho (K.M.), “Photonic band-gap microcavities in three dimensions”, Phys. Rev. B, 59, no. 24, pp. R15579-R15582, (1999).
Lin (S. Y.), Chow (E.), Johnson (S. G.), Joannopoulos (J. D.),Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-µm wavelength, Optics Lett., 25, pp. 1297–1299, (2000).
Lin (S.-Y.), Fleming (J.G.), Lin (R.), Sigalas (M. M.), Biswas (R.), Ho (K.M.), “Complete three-dimensional photonic bandgap in a simple cubic structure”, J. Opt. Soc. Am.B.18, p. 32, (2001).
Loncar (M.), Doll (T.), Vuckovic (J.), Scherer (A.),Design and fabrication of silicon photonic crystal optical waveguides, Journal of lightwave technology,18, pp. 1402–1411, (2000).
Loncar (M.), Nedeljkovic (D.), Doll (T.), Vuckovic (J.), Scherer (A.), Pearsall (T.),Waveguiding in planar photonic crystals, Appl. Phys. Lett.,77, pp. 1937–1939, (2000).
Loncar (M.), Nedeljkovic (D.), Pearsall (T.), Vukovic (J.), Scherer (A.), Kuchinsky (S.), Allan (D.), “Experimental and theoretical confirmation of Bloch modes light propagation in planar photonic crystal waveguides”, Appl. Phys. Lett.,80, No 10, pp. 1689–1691, (2002).
März (R.), Integrated Optics: design and modeling,Culshaw (B.), Rogers (A.), Taylor (A.), Eds., The Artech House Optoelectronics Library (Artech House, Boston, 1994).
Meade (R. D.), Brommer (K. D.), Rappe (A. M.), Joannopoulos (J. D.),Existence of aphotonic band gap in two dimensions, Appl. Phys. Lett.,61, p. 495, (1992).
Mekis (A.), Chen (J. C.), Kurland (I.), Villeneuve (P. R.), Joannopoulos (J. D.), “High transmission through sharp bends in photonic crystals waveguides”, Phys. Rev. Lett.,77, p.3787–3790, (1996).
Moosbürger (J.), Kamp (M.), Forchel (A.), Olivier (S.), Benisty (H.), Weisbuch (C.), Oesterle (U.), “Enhanced transmission through photonic-crystal-based bend waveguides by bend engineering,” Appl. Phys. Lett.,79, pp. 3579–3581, (2001).
Moosburger (J.), Kamp (M.), Forchel (A.), Oesterle (U.), Houdré (R.), “Transmission spectroscopy of photonic crystal based waveguides with resonant cavities”, J. Appl. Phys.,91, pp. 4791–4794, (2002).
Noda (S.), Yamamoto (N.), Kobayashi (H.), Okano (M.), Tomoda (K.),Optical properties of three-dimensional photonic crystals based on III-V semiconductors at infrared to near-infrared wavelength, Appl. Phys. Lett.,75, p. 905, (1999).
Noda (S.), Chutinan (A.), Imada (M.),Trapping and emission of photons by a single defect in a photonic bandgap structure, Nature,407, pp. 608–610, (2000).
Noda (S.), Yokoyama (M.), Imada (M.), Chutinan (A.), Mochizuki (M.) Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design, Science 293, pp. 1123–1125, (2001).
Noda (S.), Imada (M.), Okano (M.), Ogawa (S.), Mochizuki (M.), Chutinan (A.), “Semiconductor three-dimensional and two-dimensional photonic crystals and devices”, IEEE J. Quantum Electron.,38, pp. 726–735, (2002).
Notomi (M.),Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap, Phys. Rev.,B 62, pp. 10696–10705, (2000).
Notomi (M.), Tamamura (T.), Kawashima (T.), Kawakami (S.), “Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap”, Appl. Phys. Lett.,77, no. 26, pp. 4256–4258, (2000).
Notomi (M.), Yamada (K.), Shinya (A.), Takahashi (J.), Takahashi (C.), Yokohama (I.), “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs”, Phys. Rev. Lett.,87, p. 253902, (2001).
Notomi (M.), Schinya (A.), Yamada (K.), Takahashi (J.-I.), Takahashi (C.), Yokohama (I.), “Structural tuning of guiding modes of a line defect waveguide of silicon on insulator photonic crystal slabs”, IEEE J. Quantum Electron.,38, pp. 736–742, (2002).
Olivier (S.), Rattier (M.), Benisty (H.), Smith (C. J. M.), De La. Rue (R.M.), Krauss (T. F.), Oesterle (U.), Houdré (R.), Weisbuch (C.), “Mini stopbands of a one dimensional system: the channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B,63, pp. 113311, (2001).
Olivier (S.), Benisty (H.), Rattier (M.), Weisbuch (C.), Qiu (M.), Karlsson (A.), Smith (C. J. M.), Houdré (R.), Oesterle (U.),Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal, Appl. Phys. Lett.,79, pp. 2514–2516, (2001).
Olivier (S.), Smith (C.), Benisty (H.), Weisbuch (C.), Krauss (T.), Houdré (R.), Oesterle (U.), “Cascaded photonic crystal guides and cavities: spectral studies and their impact on integrated optics design”, IEEE J. Quantum Electron.,38, pp. 816–824, (2002).
Olivier (S.), Benisty (H.), Weisbuch (C.), Smith (C. J. M.), Krauss (T. F.), Houdré (R.), Oesterle (U.), “Improved 60° bend transmission of submicron-width waveguides defined by two-dimensional photonic crystals”, IEEE J. Lightwave Technol. Lett.,20, pp. 1198–1203, (2002).
Olivier (S.), “Nouvelles structures miniatures pour l’optique intégrée à base de cristaux photonique planaires”, thèse de l’Université Paris VI, (Novembre 2002).
Ortigosa-Blanch (A.), Knight (J. C.), Wadsworth (W. J.), Arriaga (J.), Mangan (B. J.), Birks (T. A.), Russel (P. St. J.),Highly birefringent photonic crystal fibres, Opt. Lett.,25, pp. 1325–1327, (2000) — and references therein.
Painter (O.), Vuckovic (J.), Scherer (A.),Defect modes of a two-dimensional crystal in an optically thin dielectric slab, J. Opt. Soc. Am.,B 16, pp. 275–285, (1999).
Painter (O. J.), Husain (A.), Scherer (A.), O’brien (J. D.), Kim (I.), Dapkus (P. D.), “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Techn., J. Lightwave Techn.,17, pp. 2082–2088, (1999).
Park (H.-G.), Hwang (J.-K.), Huh (J.), Ryu (H.-Y.), Lee (Y.-H.), Kim (J.-S.),Non-degenerate monopole-mode two-dimensional photonic band gap laser, Appl. Phys. Lett.,79, pp. 3032–3034, (2001).
Pottier (P.), Seassal (C.), Letartre (X.), Leclercq (J. L.), Viktorovitch (P.), Cassagne (D.), Jouanin (C.),Triangular and Hexagonal High Q-Factor 2D Photonic Bandgap Cavities on III-V Suspended Membranes, J. Lightwave Techn.,17, pp. 2058–2062, (1999).
Qasaimeh (O.), Singh (J.), Bhattacharya (P.), “Electro-absorption and electro-optic effect in SiGeSi quantum wells: realization of low-voltage modulators”, IEEE J. Quantum Electron.33, pp. 1532–1536, (1997).
Qiu (M.), “Effective index method for heterostructure-slab waveguide-based two-dimensional photonic crystals”, Appl. Phys. Lett.81, pp. 1163–1165, (2002).
Raffaele (L.), De La Rue (R. M.), Roberts (J. S.), Krauss (T. F.),Edge-emitting semiconductor microlasers with ultrashort-cavity and dry-etched high-reflectivity photonic microstructure mirrors, IEEE Photonics Technology Letters,13, pp. 176–178, (2001).
Rattier (M.), Benisty (H.), Smith (C. J. M.), Béraud (A.), Cassagne (D.), Krauss (T. F.), Weisbuch (C.),Performance of waveguide-based two-dimensional photonic-crystal mirrors studied with Fabry-Pérot resonators, IEEE J. Quantum Electron.,37, pp. 237–243, (2001).
Rattier (M.)et al., High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals., Optical and Quantum Electronics, (2001).
Reese (C.), Becher (C.), Imamoglu (A.), Hu (E.), Gerardot (B. D.), Petroff (P. M.),Photonic crystal microcavities with self-assembled InAs quantum dots as active emitters, Appl. Phys. Lett.,78, pp. 2279–2281, (2001).
Rigneault (H.), Lemarchand (F.), Sentenac (A.),Dipole radiation into grating structures, J. Opt. Soc. Am. A,17, pp. 1048–1058, (2000).
Robertson (W. M.), Arjavalingam (G.), Meade (R. D.), Brommer (K. D.), Rappe (A. M.), Joannopoulos (J. D.),Measurement of photonic band structure in a two-dimensional periodic array, Phys. Rev. Lett.,68, pp. 2023–2026, (1992).
Romanov (S. G.), Johnson (N. P.), Fokin (A. V.), Butko (V. Y.), Yates (H. M.), Pemble (M. E.), Torres (C. M. S.), “Enhancement of the photonic gap of opal-based three-dimensional gratings”, Appl. Phys. Lett.,70, p. 2091, (1997).
Rowson (S.), Chelnokov (A.), Lourtioz (J. M.), Carcenac (F.),Reflection and transmission characterisation of a hexagonal photonic crystal in the mid infrared, J. Appl. Phys.,83, p. 5061, (1998).
Rowson (S.), Chelnokov (A.), Lourtioz (J.-M.), “Macroporous silicon photonic crystals at 1.55 micrometers”, Electron. Lett.,35, pp. 753–755, (1999).
Rowson (S.), Chelnokov (A.), Lourtioz (J.-M.), “Two-dimensional photonic crystals in macroporous silicon photonic crystals: from mid-infrared to telecommunication wavelengths (1.3–1.55 µm)”, J. Lightwave Technol.,17, pp. 1989–1995, (1999).
Sakoda (K.),Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices, Phys. Rev. B,52, p. 7982, (1995).
Sakoda (K.), Ohtaka (K.), Ueta (T.), “Low-threshold laser oscillation due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals”, Optics Express,4, No. 12, pp. 481–489, (1999).
Sakoda (K.), Optical Properties of Photonic Crystals, Springer Series in Optical Science, vol. 80, Springer, Berlin, 2001
Schwoob (E.), Benisty (H.), Weisbuch (C.), Smith (C. J. M.), Krauss (T. F.), Houdré (R.), Oesterle (U.), “Two-mode fringes in planar photonic crystal waveguides with constrictions: a probe that is sensitive to propagation losses,”J. Opt. Soc. Am. B,19, pp. 2403–2412, (2002).
Sigalas (M.), Soukoulis (C. M.), Economou (E. N.), Chan (C. T.), Ho (K. M.),Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient, Phys. Rev. B,48, pp. 14121–14126, (1993).
Smith (C. J. M.), Krauss (T. F.), De La Rue (R. M.), Labilloy (D.), Benisty (H.), Weisbuch (C.), Oesterle (U.), Houdré (R.),In-plane microcavity resonators with two-dimensional photonic bandgap mirrors, IEE-Proc.-Optoelectron.,145, pp. 373–378, (1998).
Smith (C. J. M.), Krauss (T. F.), De la Rue (R. M.), Labilloy (D.), Benisty (H.), Weisbuch (C.), Oesterle (U.), Houdré (R.),Near-infrared microcavities confined by two-dimensional photonic bandgap crystals, Electron. Lett.,35, pp. 228–230, (1999).
Smith (C. J. M.), Krauss (T. F.), Benisty (H.), Rattier (M.), Weisbuch (C.), Oesterle (U.), Houdré (R.),Directionnally dependent confinement in photonic-crystal microcavities, J. Opt. Soc. Am. B,17, pp. 2043–2051, (2000).
Smith (C. J. M.), De la Rue (R. M.), Rattier (M.), Olivier (S.), Benisty (H.), Weisbuch (C.), Krauss (T. F.), Houdré (R.), Oesterle (U.),Coupled guide and cavity in a two-dimensional photonic crystal, Appl. Phys. Lett.,78, pp. 1487–1489, (2001).
Stefanou (N.), Modinos (A.), “Impurity bands in photonic insulators”,Phys. Rev. B,57, pp. 12127–12133, (1998).
Sugimoto (Y.), Ikeda (N.), Carlsson (N.), Asakawa (K.), Kawai (N.), Inoue (K.), “Light-propagation characteristics of Y-branch defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs”, Opt. Lett.27, pp. 388–390, (2002).
Sun (H.-B.), Matsuo (S.), Misawa (H.), “Three-dimensional photonic crystal structures achieved with two-photon-absorption, photopolymerisation of resin”, Appl. Phys. Lett.,74, no. 6, pp. 786–788, (1999).
Taillaert (D.), Bogaerts (W.), Bienstman (P.), Krauss (T. F.), Van Daele (P.), Moerman (I.), Verstuyf (S.), De Mesel (K.), Baets (R.), “An Out-of-Plane Grating Coupler for Efficient Butt-Coupling Between Compact Planar Waveguides and Single-Mode Fibers”, J. Quantum Electron.38, pp. 949–955, (2002).
Talneau (A.), Le Gouezigou (L.), Bouadma, (N.), “Quantitative measurement of low propagation losses at 1.55 µm on planar photonic crystal waveguides”, Opt. Lett.26, pp. 1259–1261, (2001).
Talneau (A.), Le Gouezigou (L.), Bouadma (N.), Kafesaki (M.), Soukoulis, (C. M.), Agio (M.), “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 µm”, Appl. Phys. Lett.80, pp. 547–549, (2002).
Talneau (A.), Lalanne (Ph.), Agio (M.), Soukoulis (C.M.), “Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths,” Opt. Lett.,27, pp. 1522–1524, (2002).
Tamir (T.), Ed.,Guided wave optoelectronics, (Springer Verlag, Berlin, (1990).
Tokushima (M.), Kosaka (H.), Tomita (A.), Yamada (H.),Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide, Appl. Phys. Lett.,76, pp. 952–954, (2000).
Villeneuve (P. R.), Fan (S.), Joannopoulos (J. D.), Lim (K. Y.), Petrich (G. S.), Kolodzleiski (L. A.), Reif (R.), Air bridge microcavities, Appl. Phys. Lett.,67, pp. 167–169, (1995).
Vuckovic (J.), Loncar (M.), Mabuchi (H.), Scherer (A.), “Design of photonic crystal microcavities for cavity QED”, Phys. Rev. E65, p. 016608, (2001).
Weisbuch (C.),Rarity (J.), Eds.,Microcavities and Photonic Band Gaps: Physics and Applications, (Kluwer, Dordrecht, 1996).
Wilson (R.), Karle (T.J.), Moerman (I.), Krauss (T.F.),Efficient photonic crystal Y-junctions, Journal of Physics,5, pp. S76-S80, (2003).
Whittaker (D. M.), Culshaw (I. S.),Scattering-matrix treatment of patterned multilayer photonic structures, Phys. Rev. B,60, pp. 2610–2618, (1999).
Yablonovitch (E.),Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Phys. Rev. Lett.,58, pp. 2059–2062, (1987).
Yablonovitch (E.), Gmitter (T. J.), Leung (K. M.),Photonic band structures: the face-centered-cubic case employing non-spherical atoms, Phys. Rev. Lett.67, p. 2295, (1991).
Yariv (A.), Xu (Y.), Lee (R. K.), Scherer (A.), “Coupled-resonator optical waveguide: a proposal and analysis”, Opt. Lett.24, pp. 711–713, (1999).
Yoshie (T.), Vuckovic (J.), Scherer (A.), Chen (H.), Deppe (D.), “High-Quality slab photonic crystals slab cavities,” Appl. Phys. Lett.,79, pp. 4289–4291, (2001).
Zijstra (T.), Van Der Drift (E.), De Dood (M.J.A.), Snoeks (E.), Polman (A.), “Fabrication of two-dimensional photonic crystal waveguides for 1.5 µm in silicon by deep anisotropic dry etching”, J. Vac. Sci. Technol. B,B 17, pp. 2734–2739, (1999).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Lourtioz, JM., Benisty, H., Chelnokov, A. et al. Photonic crystals and the real world of optical telecommunications. Ann. Télécommun. 58, 1197–1237 (2003). https://doi.org/10.1007/BF03001730
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF03001730
Key words
- Artificial dielectric
- Photonic crystal
- Two-dimensional system
- Review
- Optoelectronics
- Periodic structure
- Optical waveguide
- Planar technology
- Optical component
- Passive component
- Active component
- Optical fiber
- Silicon
- Three-dimensional system
- State of the art
- Telecommunication application