Decomposition through formalization in a product space | Mathematical Programming Skip to main content
Log in

Decomposition through formalization in a product space

  • Published:
Mathematical Programming Submit manuscript

Abstract

When an optimization problem is posed in a product space it is classical to decompose this problem. The goal of this paper is to show how such an approach can be used when the problem to be solved is not naturally posed in a product space. By associating systematically to this problem an equivalent one posed in ann-fold cartesian product space, we obtain by decomposition of the latter both a splitting of operators and a desintegration of constraints for the former. Applications to three rather classical mathematical programming problems are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Auslender, “Etude numérique des problèmes d'optimisation avec contraintes”, Doctoral thesis, University of Grenoble (Grenoble, 1969).

    Google Scholar 

  2. A. Auslender,Optimisation, méthodes numériques (Masson, Paris, 1976).

    MATH  Google Scholar 

  3. J. Baranger and T. Dumont “Decomposition and projection for nonlinear boundary value problems”, Discussion paper, UER de Mathématiques, University of Lyon I (Lyon, September 1980).

    Google Scholar 

  4. A. Bensoussan and P. Kenneth, “Sur l'analogie entre les méthodes de régularisation et de pénalisation”,Revue d'Informatique et de Recherche Opérationnelle 13-R3 (1968) 13–25.

    MathSciNet  Google Scholar 

  5. J. Cea,Optimisation (Dunod, Paris, 1971).

    MATH  Google Scholar 

  6. J. Dumont, “Décomposition par projection de certains problèmes elliptiques non linéaires”, 3rd C. Thesis, University of Lyon (Lyon 1978).

    Google Scholar 

  7. I. Ekeland and R. Temam,Analyse convexe et problèmes variationnels (Dunod, Paris, 1974).

    MATH  Google Scholar 

  8. W. Findeisen, “Parametric optimization by primal method in multilevel systems”,IEEE Transactions on Systems Science and Cybernetics 4 (1968) 155–164.

    Article  Google Scholar 

  9. N. Gastinel,Analyse numérique linéaire (Hermann, Paris, 1966).

    MATH  Google Scholar 

  10. L. G. Gubin, B.T. Polyak and E.V. Raik, “The method of projections for finding the common point of convex sets”,USSR Computational Mathematics and Mathematical Physics 7 (1967) 1–24 (Translation of theZhurnal vychislitelnoj Matematiki i matematicheskoj Fiziki).

    Article  Google Scholar 

  11. Y. Haugazeau, “Sur les inéquations variationnelles et la minimisation de fonctionnelles convexes”, Doctoral thesis, University of Paris (Paris 1968).

    Google Scholar 

  12. A.A. Kaplan, “Determination of the extremum of a linear function of a convex set”,Soviet Mathematics Doklady 9 (1968) 269–271 (Translation of the Pure Mathematics Section of the Doklady Akademii Nauk SSSR)

    MATH  Google Scholar 

  13. J.E. Kelley, “The cutting plane method for solving convex programs”,Journal of the Society for Industrial and Applied Mathematics 6 (1958) 15–22.

    Article  MATH  MathSciNet  Google Scholar 

  14. P.J. Laurent and B. Martinet, “Méthodes duales pour le calcul du minimum d'une fonction convexe sur une intersection de convexes”, in: A. V. Balakrishnan, M. Contensou, B.F. de Veubeke, P. Krée, J. L. Lions and N.N. Moiseev, eds,Lecture Notes in Mathematics 132 (Springer, Berlin, 1970) pp. 159–180.

    Google Scholar 

  15. J.L. Lions and R. Temam, “Eclatement et décentralisation en calcul des variations”, in: A.V. Balakrishnan, M. Contensou, B.F. de Veubeke, P. Krée, J.L. Lions and N.N. Moiseev, eds.,Lecture Notes in Mathématics 132 (Springer, Berlin, 1970) pp. 196–217.

    Google Scholar 

  16. J.L. Lions and G.I. Marchouk,Sur les méthodes numériques en sciences physiques et économiques (Dunod, Paris, 1974).

    MATH  Google Scholar 

  17. L. McLinden, “Symmetrized separable convex programming”,Transactions of the American Mathematical Society 247 (1979) 1–44.

    Article  MATH  MathSciNet  Google Scholar 

  18. B. Martinet, “Algorithmes pout la résolution des problèmes d'optimisation et de minimax”, Doctoral thesis, University of Grenoble (Grenoble, 1972).

    Google Scholar 

  19. B. Martinet and A. Auslander, “Méthodes de décomposition pour la minimisation d'une fonction sur un espace produit”,SIAM Journal on Control 12 (1974) 635–642.

    Article  MATH  Google Scholar 

  20. Y.I. Merzlyakov, “On a relaxation method of solving systems of linear inequalities”USSR Computational Mathematics and Mathematical Physics 2 (1962) 482–487 (Translation of the Zhurnal vychislitelnoj Matematiki i matematicheskoj Fiziki).

    Google Scholar 

  21. M. D. Mesarovic, D. Macko and Y. Takahara,Theory of hierarchical multilevel systems (Academic Press, New York, 1970).

    MATH  Google Scholar 

  22. J.J. Moreau, “Proximité et dualité dans un espace hilbertien”,Bulletin de la Société Mathématique de France 93 (1965) 273–299.

    MATH  MathSciNet  Google Scholar 

  23. W. Oettli, “An iterative method, having a linear rate of convergence, for solving a pair of dual linear programs”,Mathematical Programming 3 (1972) 302–311.

    Article  MATH  MathSciNet  Google Scholar 

  24. E.L. Peterson, “Generalization and symmetrization of duality in geometric programming”, Discussion paper, Northwestern University, [Evanston, 1972].

    Google Scholar 

  25. G. Pierra, “Eclatement de contraintes en parallèle pour la minimisation d'une forme quadratique” in: J. Cea, ed.,Lecture Notes in Computer Science 41 (Springer, Berlin, 1976) pp. 200–218.

    Google Scholar 

  26. G. Pierra, “Crossing of algorithms in decomposition methods”, in: G. Gardabassi and A. Locatelli, eds.,Large Scale Systems theory and applications (ISA, Pittsburg, 1976) pp. 309–319.

    Google Scholar 

  27. G. Pierra, “Méthodes de décomposition et croisement d'algorithmes pour des problèmes d'optimisation”, Doctoral thesis, University of Grenoble (Grenoble 1976).

    Google Scholar 

  28. R. T. Rockafellar, “Monotone operators and the proximal point algorithm”,SIAM Journal on Control 14 (1976) 877–898.

    Article  MATH  MathSciNet  Google Scholar 

  29. R. Temam, “Quelques méthodes de décomposition en analyse numérique”, in:Actes, Congrès International des Mathématiciens 1970 (Gauthier-Villars, Paris, 1971) pp. 311–319.

    Google Scholar 

  30. N.N. Yanenko,Méthode à pas fractionnaires (Armand Colin, Paris, 1968).

    MATH  Google Scholar 

  31. R.S. Varga,Matrix iterative analysis (Prentice Hall, Englewood Cliffs, N.J., 1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierra, G. Decomposition through formalization in a product space. Mathematical Programming 28, 96–115 (1984). https://doi.org/10.1007/BF02612715

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02612715

Key words

Navigation