Cycle games and cycle cut games | Combinatorica
Skip to main content

Cycle games and cycle cut games

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

Two players play a game on a connected graphG. Each player in his turn occupies an edge ofG. The player who occupies a set of edges that contains a cycle, before the other does it, wins. This game may end in a draw. We call this game the normal cycle game. We define furthermore three similar games, which are called the misère cycle game, the normal cycle cut game and the misère cycle cut game. We characterize the above four games.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Baron andW. Imrich, On the maximal distance of spanning trees,J. Combinatorial Theory 5 (1968), 378–385.

    MATH  MathSciNet  Google Scholar 

  2. J. Bruno andL. Weinberg, A constructive graph-theoretic solution of the Shannon switching game,IEEE Trans. Circuit Theory 17, 1 (1971), 74–81.

    Article  MathSciNet  Google Scholar 

  3. J. Edmonds, Lehman’s switching game and a theorem of Tutte and Nash-Williams,J. Res. NBS 69B (1965), 73–77.

    MathSciNet  Google Scholar 

  4. M. Kano, Generalization of Shannon wistching game, to appear.

  5. M. Kano, A class of Shannon switching game played on vertices,Memoirs of The Akashi Technological College 19 (1977), 77–85.

    Google Scholar 

  6. G. Kishi andY. Kajitani, Maximally distant trees and principal partition of a linear graph,IEEE Trans. Circuit Theory 16, 3 (1969), 323–330.

    MathSciNet  Google Scholar 

  7. A. Lehman, A solution to the Shannon switching game,SIAM J. Appl. Math. 12 (1964), 687–725.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kano, M. Cycle games and cycle cut games. Combinatorica 3, 201–206 (1983). https://doi.org/10.1007/BF02579294

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02579294

AMS subject classification (1980)