Accurate numerical approximations to initial value problems with periodical solutions | Computing Skip to main content
Log in

Accurate numerical approximations to initial value problems with periodical solutions

Genaue numerische Näherungen für Anfangswertprobleme mit periodischen Lösungen

  • Short Communications
  • Published:
Computing Aims and scope Submit manuscript

Abstract

An explicit fourth order Runge-Kutta Fehlberg method for the numerical solution of first order differential equations having oscillating solutions is developed in this paper. This method is constructed using a linear homogeneous test equation with phase-lag of order either six or eight and with dissipative order six. Both the schemes are used for the numerical solution of equations describing free and weakly forced oscillations and semidiscretized hyperbolic equations. The numerical results obtained show that the new method is much more accurate than other methods proposed recently.

Zusammenfassung

In dieser Arbeit wird ein explizites RKF-Verfahren zur numerischen Lösung von Differentialgleichungen 1. Ordnung mit periodischen Lösungen entwickelt. Für eine lineare homogene Testaufgabe ergeben sich dabei eine dissipative Ordnung 6 und Phasenverschiebungen der Ordnung 6 bzw. 8. Beide Varianten werden auf Gleichungen angewandt, die freie oder schwach-erzwungene Schwingungen beschreiben, sowie auf teildiskretisierte hyperbolische Gleichungen. Die numerischen Ergebnisse erweisen das neue Verfahren als wesentlich genauer als andere kürzlich vorgeschlagene Verfahren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Brusa, L., Nigro, L.: A one-step method for direct integration of structural dynamic equations. Internat. J. Numer. Methods Engrg.15, 685–699 (1980).

    Google Scholar 

  2. Chawla, M. M., Rao, P. S.: A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems. J. Comput. Appl. Math.11, 277–281 (1984).

    Google Scholar 

  3. Chawla, M. M., Rao, P. S.: A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems II. Explicit method. J. Comput. Appl. Math.15, 329–337 (1986).

    Google Scholar 

  4. Chawla, M. M., Rao, P. S., Neta, B.: Two-step fourth orderP-stable methods with phase-lag of order six fory″=f(t, y). J. Comput. Appl. Math.16, 233–236 (1986).

    Google Scholar 

  5. Chawla, M. M., Rao, P. S.: An explicit sixth-order method with phase-lag of order eight fory″=f(t,y). J. Comput. Appl. Math.17, 365–368 (1987).

    Google Scholar 

  6. Coleman, J. P.: Numerical methods fory″=f(x,y) via rational approximation for the cosine. IMA J. Numer. Anal.9, 145–165 (1989).

    Google Scholar 

  7. Fehlberg, E.: Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems. NASA Technical Report315, USA, 1969.

  8. Houwen, P. J. van der, Sommeijer, B. P.: Predictor-corrector methods for periodic second-order intial value problems. IMA J. Numer. Anal.7, 407–422 (1987).

    Google Scholar 

  9. Houwen, P. J. van der, Sommeijer, B. P.: Explicit Runge-Kutta (-Nystrom) methods with reduced phase errors for computing oscillating solutions. SIAM J. Numer. Anal.24, 595–617 (1987).

    Google Scholar 

  10. Houwen, P. J. van der Sommeijer, B. P.: Diagonally implicit Runge-Kutta-Nystrom methods for oscillatory problems. SIAM J. Numer. Anal.26, 414–429 (1989).

    Google Scholar 

  11. Houwen, P. J. van der, Sommeijer, B. P.: Phase-lag analysis of implicit Runge-Kutta methods. SIAM J. Numer. Anal.26, 214–229 (1989).

    Google Scholar 

  12. Houwen, P. J. van der: Construction of integration formulas for initial value problems. Amsterdam: North-Holland 1977.

    Google Scholar 

  13. Raptis, A. D., Simos, T. E.: A four-step phase fitted method for the numerical integration of second order initial-value problems. BIT31, 89–121 (1990).

    Google Scholar 

  14. Sideridis, A. B., Simos, T. E.: Accurate numerical approximations to initial value problems with oscillating solutions in biology, Report TR/48, Informatics Laboratory, Agricultural University of Athens, Greece, 1991.

    Google Scholar 

  15. Simos, T. E., Raptis, A. D.: Numerov-type methods with minimal phase-lag for the numerical integration of the one-dimensional Schrodinger equation. Computing45, 175–181 (1990).

    Google Scholar 

  16. Simos, T. E.: A two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problem, Internat. J. Comput. Math.39, 135–140 (1991).

    Google Scholar 

  17. Thomas, R. M.: Phase properties of high order, almostP-stable formulae. BIT.24, 225–238 (1984).

    Google Scholar 

  18. Simos, T. E.: On the phase-lag analysis (in preparation).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simos, T.E., Sideridis, A.B. Accurate numerical approximations to initial value problems with periodical solutions. Computing 50, 87–92 (1993). https://doi.org/10.1007/BF02280042

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02280042

AMS Subject Classification

Key words

Navigation