Abstract
The general form of a quasilinear nonstationaryk-step method for solving of the Cauchy problem for ordinary differential equations is discussed. The convergence theorem is stated under rather weak conditions. It is not assumed that the increment function is Lipschitz-continuous but only that it satisfies the Perron type condition appearing in the uniqueness theory for the Cauchy problem with a nondecreasing comparison function. The result established in the paper is an extension of the theory given by G. Dahlquist and the recent result of K. Taubert.
Zusammenfassung
Es wird ein allgemeines, quasilineares, nichtstationäresk-Schrittverfahren für die Lösung des Cauchy-Problems für gewöhnliche Differentialgleichungen untersucht. Ein Konvergenzsatz mit ziemlich schwachen Bedingungen wird angegeben. Die Inkrementfunktion muß nicht Lipschitz-stetig sein; es genügt, wenn diese Funktion die Perron-Bedingung aus der Eindeutigkeitstheorie für das Cauchy-Problem mit nichtabnehmender Vergleichfunktion erfüllt. Das Ergebnis ist eine Erweiterung der Theorie von G. Dahlquist und des letzten Resultats von K. Taubert.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Chartres, B., Stepleman, R.: A general theory of convergence for numerical methods. SIAM J. Numer. Anal.9, 476–492 (1972).
Cooper, G. J., Gal, E.: Single step methods for linear differential equations. Numer. Math.10, 307–315 (1967).
Gear, C. W.: Numerical Initial Value Problems in Ordinary Differential Equations. Englewood Cliffs, N. J.: Prentice-Hall 1971.
Gear, C. W., Tu, K. W.: The effect of variable mesh size on the stability of multistep methods. SIAM J. Numer. Anal.11, 1025–1043 (1974).
Hartman, P.: Ordinary Differential Equations. New York-London-Sydney: J. Wiley 1964.
Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations. New York: J. Wiley 1968.
Kamont, Z., Kwapisz, M.: On the convergence of one-step methods of numerical solving of the Cauchy problem for ordinary differential equations (unpublished).
Lambert, J. D., Shaw, B.: A generalization of multistep methods for Ordinary differential equations. Numer. Math.8, 250–265 (1966).
Mäkelä, M., Nevanlinna, O., Sipilä, H.: On the concepts of convergence, consistency, and stability in connection with some numerical methods. Numer. Math.22, 261–274 (1974).
Martinjuk, D. I.: Lectures on qualitive theory of difference equations. (in Russian). Kiev: Naukova Dumka 1972.
Ortega, J. M.: Numerical Analysis, A Second Course. New York-London: Academic Press 1972.
Skeel, R.: Analysis of fixed-stepsize methods. SIAM J. Numer. Anal.13, 664–685 (1976).
Spijker, M. N.: Convergence and stability of step by step methods for the numerical solution of initial-value problems. Numer. Math.8, 161–177 (1966).
Spijker, M. N.: On the structure of error estimates for finite-difference methods. Numer. Math.18, 73–100 (1971).
Spijker, M. N.: On the possibility of two-sided error bounds in the numerical solution of initial-value problems. Numer. Math.26, 271–300 (1976).
Squier, D. P.: One-step methods for ordinary differential equations. Numer. Math.13, 176–179 (1969).
Stetter, H. J.: Analysis of Discretization Methods for Ordinary Differential Equations. Berlin-Heidelberg-New York: Springer 1973.
Taubert, K.: Eine Erweiterung der Theorie von G. Dahlquist. Computing17, 177–185 (1976).
Taubert, K.: Zusammenhänge zwischen Eindeutigkeitssätzen und Näherungsverfahren für gewöhnliche Anfangswertaufgaben, Numerische Behandlung von Differentialgleichungen, Band 2 (Albrecht, J., Collatz, L., ed.), ISMN, Basel: Birkhäuser 1976.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Jackiewicz, Z., Kwapisz, M. On the convergence of multistep methods for the Cauchy problem for ordinary differential equations. Computing 20, 351–361 (1978). https://doi.org/10.1007/BF02252383
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02252383