On the convergence of multistep methods for the Cauchy problem for ordinary differential equations | Computing Skip to main content
Log in

On the convergence of multistep methods for the Cauchy problem for ordinary differential equations

Über die Konvergenz des k-Schrittverfahrens für gewöhnliche Differentialgleichungen

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The general form of a quasilinear nonstationaryk-step method for solving of the Cauchy problem for ordinary differential equations is discussed. The convergence theorem is stated under rather weak conditions. It is not assumed that the increment function is Lipschitz-continuous but only that it satisfies the Perron type condition appearing in the uniqueness theory for the Cauchy problem with a nondecreasing comparison function. The result established in the paper is an extension of the theory given by G. Dahlquist and the recent result of K. Taubert.

Zusammenfassung

Es wird ein allgemeines, quasilineares, nichtstationäresk-Schrittverfahren für die Lösung des Cauchy-Problems für gewöhnliche Differentialgleichungen untersucht. Ein Konvergenzsatz mit ziemlich schwachen Bedingungen wird angegeben. Die Inkrementfunktion muß nicht Lipschitz-stetig sein; es genügt, wenn diese Funktion die Perron-Bedingung aus der Eindeutigkeitstheorie für das Cauchy-Problem mit nichtabnehmender Vergleichfunktion erfüllt. Das Ergebnis ist eine Erweiterung der Theorie von G. Dahlquist und des letzten Resultats von K. Taubert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chartres, B., Stepleman, R.: A general theory of convergence for numerical methods. SIAM J. Numer. Anal.9, 476–492 (1972).

    Article  Google Scholar 

  2. Cooper, G. J., Gal, E.: Single step methods for linear differential equations. Numer. Math.10, 307–315 (1967).

    Article  Google Scholar 

  3. Gear, C. W.: Numerical Initial Value Problems in Ordinary Differential Equations. Englewood Cliffs, N. J.: Prentice-Hall 1971.

    Google Scholar 

  4. Gear, C. W., Tu, K. W.: The effect of variable mesh size on the stability of multistep methods. SIAM J. Numer. Anal.11, 1025–1043 (1974).

    Article  Google Scholar 

  5. Hartman, P.: Ordinary Differential Equations. New York-London-Sydney: J. Wiley 1964.

    Google Scholar 

  6. Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations. New York: J. Wiley 1968.

    Google Scholar 

  7. Kamont, Z., Kwapisz, M.: On the convergence of one-step methods of numerical solving of the Cauchy problem for ordinary differential equations (unpublished).

  8. Lambert, J. D., Shaw, B.: A generalization of multistep methods for Ordinary differential equations. Numer. Math.8, 250–265 (1966).

    Article  Google Scholar 

  9. Mäkelä, M., Nevanlinna, O., Sipilä, H.: On the concepts of convergence, consistency, and stability in connection with some numerical methods. Numer. Math.22, 261–274 (1974).

    Article  Google Scholar 

  10. Martinjuk, D. I.: Lectures on qualitive theory of difference equations. (in Russian). Kiev: Naukova Dumka 1972.

    Google Scholar 

  11. Ortega, J. M.: Numerical Analysis, A Second Course. New York-London: Academic Press 1972.

    Google Scholar 

  12. Skeel, R.: Analysis of fixed-stepsize methods. SIAM J. Numer. Anal.13, 664–685 (1976).

    Article  Google Scholar 

  13. Spijker, M. N.: Convergence and stability of step by step methods for the numerical solution of initial-value problems. Numer. Math.8, 161–177 (1966).

    Article  Google Scholar 

  14. Spijker, M. N.: On the structure of error estimates for finite-difference methods. Numer. Math.18, 73–100 (1971).

    Article  Google Scholar 

  15. Spijker, M. N.: On the possibility of two-sided error bounds in the numerical solution of initial-value problems. Numer. Math.26, 271–300 (1976).

    Article  Google Scholar 

  16. Squier, D. P.: One-step methods for ordinary differential equations. Numer. Math.13, 176–179 (1969).

    Article  Google Scholar 

  17. Stetter, H. J.: Analysis of Discretization Methods for Ordinary Differential Equations. Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  18. Taubert, K.: Eine Erweiterung der Theorie von G. Dahlquist. Computing17, 177–185 (1976).

    Google Scholar 

  19. Taubert, K.: Zusammenhänge zwischen Eindeutigkeitssätzen und Näherungsverfahren für gewöhnliche Anfangswertaufgaben, Numerische Behandlung von Differentialgleichungen, Band 2 (Albrecht, J., Collatz, L., ed.), ISMN, Basel: Birkhäuser 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackiewicz, Z., Kwapisz, M. On the convergence of multistep methods for the Cauchy problem for ordinary differential equations. Computing 20, 351–361 (1978). https://doi.org/10.1007/BF02252383

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02252383

Keywords

Navigation