Abstract
Starting from an existence and uniqueness theorem for a generalized nonsingular second kind Volterra equation existence and uniqueness for the solution of the nonlinear, weakly singular first kind Volterra equation is examined. A new type of numerical method is developed. A basic lemma concerning the boundedness of a special difference inequality is given and order two or three convergence of the method is shown. Two numerical examples illustrate the theoretical results.
Zusammenfassung
Ausgehend von einem Existenz- und Eindeutigkeitssatz für die Lösung einer verallgemeinerten Volterra-Integralgleichung zweiter Art wird die Existenz und Eindeutigkeit der Lösung der hier behandelten nichtlinearen, schwach singulären Volterra-Integralgleichung erster Art untersucht. Es wird ein numerisches Verfahren der Ordnung 2 bzw. 3 angegeben. Der Konvergenzbeweis basiert in beiden Fällen auf einem Lemma über die Beschränktheit einer speziellen Differenzenungleichung. An zwei numerischen Beispielen werden die theoretischen Ergebnisse demonstriert.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Atkinson, K. E.: The numerical solution of an Abel integral equation by a product trapezoidal method. SIAM J.N.A.11.1, 97–101 (1974).
Bocher, M.: An introduction to the study of integral equations. New York: Hafner Publishing Co. 1913.
Branca, H. W.: Die nichtlineare Volterra-Integralgleichung vom Abelschen Typ und ihre numerische Behandlung. Dissertation, Universität Köln, 1976.
Brunner, H.: Global solution of the generalized Abel integral equation by implicit interpolation. Math. Comp.28, 61–67 (1974).
Durbin, J.: Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov-Test. J. Appl. Prob.8, 431–453 (1971).
Fettis, H. E.: On the numerical solution of equations of the Abel type. Math. of Comp.18, 491–496 (1963).
Meis, T.: Eine spezielle Integralgleichung erster Art. Tagung über numerische Behandlung von Differentialgleichungen. (Lecture Notes.) Berlin-Heidelberg-New York: Springer 1976.
Minerbo, G. N., Levy, M. E.: Inversion of Abel's integral equation by means of orthogonal polynomials. SIAM J.N.A.6.4, 598–616 (1969).
Nestor, O. H., Olsen, H. N.: Numerical methods for reducing line and surface probe data. SIAM Rev.2, 200–207 (1960).
Piessens, R., Verbaeten, P.: Numerical solution of the Abel integral equation. BIT13, 451–457 (1973).
Stoer, J.: Numerische Mathematik I. (Heidelberger Taschenbuch 105.) Berlin-Heidelberg-New York: Springer 1972.
Weiß, R.: Product integration for the generalized Abel equation. Math. Comp.26, 177–190 (1972).
Weiß, R., Anderssen, R. S.: A product integration method for a class of singular first kind Volterra equations. Num. Math.18, 442–456 (1972).
Young, A.: The application of approximate product-integration to the numerical solution of integral equations. Proc. Roy. Soc. (London)A224, 561–573 (1954).
Author information
Authors and Affiliations
Additional information
This paper contains results of the author's dissertation [3]. Some of the proofs had to be shortened or omitted, so for the details we have to refer to the original paper [3], which will be send on to interested readers.
Rights and permissions
About this article
Cite this article
Branca, H.W. The nonlinear Volterra equation of Abel's kind and its numerical treatment. Computing 20, 307–324 (1978). https://doi.org/10.1007/BF02252379
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02252379