The nonlinear Volterra equation of Abel's kind and its numerical treatment | Computing
Skip to main content

The nonlinear Volterra equation of Abel's kind and its numerical treatment

Die nichtlineare Volterra Integralgleichung vom Abelschen Typ und ihre numerische Behandlung

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Starting from an existence and uniqueness theorem for a generalized nonsingular second kind Volterra equation existence and uniqueness for the solution of the nonlinear, weakly singular first kind Volterra equation is examined. A new type of numerical method is developed. A basic lemma concerning the boundedness of a special difference inequality is given and order two or three convergence of the method is shown. Two numerical examples illustrate the theoretical results.

Zusammenfassung

Ausgehend von einem Existenz- und Eindeutigkeitssatz für die Lösung einer verallgemeinerten Volterra-Integralgleichung zweiter Art wird die Existenz und Eindeutigkeit der Lösung der hier behandelten nichtlinearen, schwach singulären Volterra-Integralgleichung erster Art untersucht. Es wird ein numerisches Verfahren der Ordnung 2 bzw. 3 angegeben. Der Konvergenzbeweis basiert in beiden Fällen auf einem Lemma über die Beschränktheit einer speziellen Differenzenungleichung. An zwei numerischen Beispielen werden die theoretischen Ergebnisse demonstriert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Atkinson, K. E.: The numerical solution of an Abel integral equation by a product trapezoidal method. SIAM J.N.A.11.1, 97–101 (1974).

    Article  Google Scholar 

  2. Bocher, M.: An introduction to the study of integral equations. New York: Hafner Publishing Co. 1913.

    Google Scholar 

  3. Branca, H. W.: Die nichtlineare Volterra-Integralgleichung vom Abelschen Typ und ihre numerische Behandlung. Dissertation, Universität Köln, 1976.

  4. Brunner, H.: Global solution of the generalized Abel integral equation by implicit interpolation. Math. Comp.28, 61–67 (1974).

    Google Scholar 

  5. Durbin, J.: Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov-Test. J. Appl. Prob.8, 431–453 (1971).

    Google Scholar 

  6. Fettis, H. E.: On the numerical solution of equations of the Abel type. Math. of Comp.18, 491–496 (1963).

    Google Scholar 

  7. Meis, T.: Eine spezielle Integralgleichung erster Art. Tagung über numerische Behandlung von Differentialgleichungen. (Lecture Notes.) Berlin-Heidelberg-New York: Springer 1976.

    Google Scholar 

  8. Minerbo, G. N., Levy, M. E.: Inversion of Abel's integral equation by means of orthogonal polynomials. SIAM J.N.A.6.4, 598–616 (1969).

    Article  Google Scholar 

  9. Nestor, O. H., Olsen, H. N.: Numerical methods for reducing line and surface probe data. SIAM Rev.2, 200–207 (1960).

    Article  Google Scholar 

  10. Piessens, R., Verbaeten, P.: Numerical solution of the Abel integral equation. BIT13, 451–457 (1973).

    Article  Google Scholar 

  11. Stoer, J.: Numerische Mathematik I. (Heidelberger Taschenbuch 105.) Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  12. Weiß, R.: Product integration for the generalized Abel equation. Math. Comp.26, 177–190 (1972).

    Google Scholar 

  13. Weiß, R., Anderssen, R. S.: A product integration method for a class of singular first kind Volterra equations. Num. Math.18, 442–456 (1972).

    Article  Google Scholar 

  14. Young, A.: The application of approximate product-integration to the numerical solution of integral equations. Proc. Roy. Soc. (London)A224, 561–573 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper contains results of the author's dissertation [3]. Some of the proofs had to be shortened or omitted, so for the details we have to refer to the original paper [3], which will be send on to interested readers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branca, H.W. The nonlinear Volterra equation of Abel's kind and its numerical treatment. Computing 20, 307–324 (1978). https://doi.org/10.1007/BF02252379

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02252379

Keywords