Polynomial least square interval approximation | Computing Skip to main content
Log in

Polynomial least square interval approximation

Ausgleichsprobleme bei Intervall-Polynomen

  • Published:
Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The following problem is treated: given a set ofm rectangular regions in the plane, fit an interval polynomial of degreen>m through the regions. This is a generalization of the discrete polynomial least squares problem. Three generalizations of the standard methods for the discrete polynomial least squares are considered and compared on numerical examples. One of the methods is recommended since it gives superior results in all cases tested.

Zusammenfassung

Das folgende Problem wird behandelt: gegeben sei eine Menge vonm rechteckigen Gebieten in der Ebene, man finde ein Intervall-Polynom vom Gradn>m durch diese Gebiete. Dies ist eine Verallgemeinerung des diskreten Problems der kleinsten Quadrate. Drei Verallgemeinerungen der gewöhnlichen Methode der kleinsten Quadrate für Polynome werden betrachtet und an numerischen Beispielen verglichen. Eine dieser Methoden wird empfohlen, da sie in allen Testbeispielen bessere Ergebnisse gibt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Forsythe, G. E.: Generation and use of orthogonal polynomials for data-fitting with a digital computer. Journal Soc. Indust. Appl. Math.5, 74–88 (1957).

    Article  Google Scholar 

  2. Hansen, E., Smith, R.: Interval arithmetic in matrix computations, Part II. SIAM J. Numerical Analysis4, 1–9 (1967).

    Article  Google Scholar 

  3. Natanson, J. P.: Constructive function theory, Vol. II, Approximation in the Mean. New York: Frederick Ungar Publishing Company 1965.

    Google Scholar 

  4. Neuman, C. P., Schonbach, D. I.: Discrete (Legendre) orthogonal polynomials — a survey. International Journal for Numerical Methods in Engineering8, 743–770 (1974).

    Article  Google Scholar 

  5. Spellucci, P., Krier, N.: Ein Verfahren zur Behandlung von Ausgleichsaufgaben mit Intervallkoeffizienten. Computing17, 207–218 (1976).

    Google Scholar 

  6. Ratschek, H.: Gleichheit von Produkt und Formalprodukt bei Intervallpolynomen. Computing10, 245–254 (1972).

    Google Scholar 

  7. Ris, F. N.: Interval Analysis and Application to Linear Algebra. Ph. D. Thesis, Oxford, 1972.

  8. Rokne, J.: Reducing the degree of an interval polynomial. Computing14, 5–14 (1975).

    Article  Google Scholar 

  9. Rokne, J.: The Lagrange interpolating polynomial. Computing9, 149–157 (1972).

    Google Scholar 

  10. Young, D. M., Gregory, R. T.: A Survey of numerical mathematics, Vol. 1. Addison-Wesley Publishing Company 1972.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rokne, J. Polynomial least square interval approximation. Computing 20, 165–176 (1978). https://doi.org/10.1007/BF02252345

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02252345

Keywords

Navigation