On the numerical solution of the eigenvalue problem of the laplace operator by a capacitance matrix method | Computing
Skip to main content

On the numerical solution of the eigenvalue problem of the laplace operator by a capacitance matrix method

Über die numerische Lösung des Eigenwertproblems für den laplace-operator mit der Kapazitäts-matrizen-methode

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The problem of finding several eigenfunctions and eigenvalues of the interior Dirichlet problem for Laplace's equation on arbitrary bounded plane regions is considered. Two fast algorithms are combined: an iterative Block Lanczos method and a capacitance matrix method. The capacitance matrix is generated and factored only once for a given problem. In each iteration of the Block Lanczos method, a discrete Helmholtz equation is solved twice on a rectangle at a cost of the order ofn 2 log2 n operations wheren is the number of mesh points across the rectangle in which the region is imbedded.

Zusammenfassung

Es wird über das Auffinden mehrerer Eigenfunktionen und Eigenwerte des inneren Dirichlet-Problems für die Laplace-Gleichung mit willkürlich begrenzten ebenen Gebieten berichtet. Zwei schnelle Algorithmen werden miteinander kombiniert. Eine iterative Block-Lanczos-Methode und eine Kapazitäts-Matrizen-Methode. Die Kapazitäts-Matrix wird berechnet und nur einmal für ein gegebenes Problem faktorisiert. Bei jedem Iterationsschritt der Block-Lanczos-Methode wird eine diskrete Helmholtz-Gleichung zweimal auf einem Rechteck mit einer zu n2log2 n proportionalen Anzahl von Operationen gelöst, wobein die Zahl der Netzpunkte zu dem Rechteck ist, in das das Gebiet eingebettet ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bramble, J. H., Hubbard, B. E.: Effects of boundary regularity on the discretization error in the fixed membrane eigenvalue problem. SIAM J. Numer. Anal.5, 835–863 (1968).

    Article  Google Scholar 

  2. Bus, J. C. P., Dekker, T. J.: Two efficient algorithms with guaranteed convergence for finding a zero of a function. Report NW 13/74, Amsterdam: Mathematisch Centrum 1974.

    Google Scholar 

  3. Courant, R., Hilbert, D.: Methods of Mathematical Physics, Vol. 1. Interscience 1953.

  4. Cullum, J., Donath, W. E.: A block generalization of the symmetric S-step Lanczos algorithm. Report No. RC 4845 (NO. 21570), IBM Thomas. J. Watson Research Center, Yorktown Heights, New York, May 1974.

    Google Scholar 

  5. Forsythe, G. E., Wasow, W. R.: Finite-Difference Methods for Partial Differential Equations. New York: Wiley 1960.

    Google Scholar 

  6. Garabedian, P. R.: Partial Differential Equations. New York: Wiley 1964.

    Google Scholar 

  7. Golub, G. H.: Some uses of the Lanczos algorithm in numerical linear algebra, in: Topics in Numerical Analysis (Miller, T., ed). Academic Press 1972.

  8. Golub, G. H., Jenning, L., Yang, W. H.: Waves in periodically structure media. J. Comp. Phys.17, 349–357 (1975).

    Article  Google Scholar 

  9. Golub, G. H., Underwood, R., Wilkinson, J. H.: The Lanczos algorithm for the symmetricAx=λBx problem. Stanford Report CS-72-270, March. 1972.

  10. Kaniel, S.: Estimates for some computational techniques in linear algebra. Math. Comp.20, 369–378 (1966).

    Google Scholar 

  11. Kuttler, J. R.: Direct methods for computing eigenvalues of the finite-difference Laplacian. SIAM J. Numer. Anal.11, 732–740 (1974).

    Article  Google Scholar 

  12. Kuttler, J. R.: Finite-difference approximations for eigenvalues of uniformly elliptic operators. SIAM J. Numer. Anal.7, 206–232 (1970).

    Article  Google Scholar 

  13. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Standards45, 255–283 (1950).

    Google Scholar 

  14. Moler, C. B.: Finite difference methods for the eigenvalues of Laplace's operator, Stanford Report CS-22, 1965.

  15. Paige, C. C.: The computation of eigenvalues and eigenvectors of very large sparse matrices. Ph. D. dissertation, The University of London, 1971.

  16. Paige, C. C.: Computational variants of the Lanczos method for the eigenproblem. J. Inst. Maths. Applics.10, 373–381 (1972).

    Google Scholar 

  17. Paige, C. C.: Error analysis of the Lanczos algorithm for tridiagonalization of a symmetric matrix. J. Inst. Math. Appl.18, 341–349 (1976).

    Google Scholar 

  18. Paige, C. C., Saunders, M. A.: Solutions of sparse indefinite systems of equations. SIAM J. Numer. Anal.12, 617–629 (1975).

    Article  Google Scholar 

  19. Pereyra, V., Proskurowski, W., Widlund, O.: High order fast Laplace solver for the Dirichlet problem on general regions. Math. Comp.31, 1–16 (1977).

    Google Scholar 

  20. Proskurowski, W., Widlund, O.: On the numerical solution of Helmholtz's equation by the capacitance matrix method. Math. Comp.30, 433–468 (1976). Appeared also as ERDA Report COO-3077-99, New York University, November 1975.

    Google Scholar 

  21. Rutishauser, H.: Simultaneous iteration method for symmetric matrices. Numer. Math.16, 205–223 (1970).

    Article  Google Scholar 

  22. Shieh, A.: Fast Poisson solver on nonrectangular domains. Ph. D. thesis, New York University, June 1976.

  23. Stewart, G. W.: The numerical treatment of large eigenvalue problems. IFIP74, 666–672 (1974).

    Google Scholar 

  24. Underwood, R.: An iterative block Lanczos method for the solution of large sparse symmetric eigenproblems. Stanford Report CS-496, May 1975.

  25. Watson, G. N.: A treatise on the theory of Bessel functions. Cambridge Univ. Press 1952.

  26. Wilkinson, J. H., Reinsch, C.: Handbook for Automatic Computation, Vol. II, Linear Algebra, Part 2. New York-Heidelberg-Berlin, Springer 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was done with support from the U.S. Energy Research and Development Administration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proskurowski, W. On the numerical solution of the eigenvalue problem of the laplace operator by a capacitance matrix method. Computing 20, 139–151 (1978). https://doi.org/10.1007/BF02252343

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02252343

Keywords