Abstract
The present paper contains a stability concept for discretization methods of a certain, very general classM, which is optimal (in the sense of yielding the best general, two-sided error bounds) without being more restrictive than any of the classical stability definitions. The optimal stability functional Ψh related to it depends on the linear part of the discretization operator, and has the important property that Ψh [δ] may be of orderq+1, i.e. Ψh [δ] = O(h q+1), even if the local error δ only has orderq, δ = O(h q). This result may be used for the construction of methods with maximum order. Its application to linear cyclic methods, for example, furnishes a new approach to the theory of linearM-cyclick-step methods of maximum order.
Zusammenfassung
Die vorliegende Arbeit enthält eine Stabilitätsdefinition für sehr allgemeine Diskretisierungsverfahren, die insofern optimal ist, als sie die besten, zweiseitigen Fehlerschranken ergibt, ohne dabei restriktiver zu sein, als die klassischen Stabilitätsdefinitionen. Das zugehörige optimale Stabilitätsfunktional Ψh hängt in einfacher Weise vom linearen Teil des Diskretisierungsoperators ab und hat die bemerkenswerte Eigenschaft, daß Ψh [δ] die Ordnung (q+1) haben kann, d. h. Ψh [δ]=O(hq+1), auch wenn δ nur die Ordnungq hat. Notwendige und hinreichende Bedingungen hierfür werden abgeleitet. Dieses Ergebnis ist von praktischer Bedeutung bei der Konstruktion von Verfahren maximaler Konvergenzordnung. Insbesondere führt seine Anwendung auf lineare zyklische Verfahren zu einer neuen Darstellung der TheorieM-zyklischerk-Schrittverfahren und zu ihrem tieferen Verständnis.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Albrecht, P.: Discretization Methods. 9-th Brasilian Mathematical Coll., Poços de Caldas 1973.
Albrecht, P.: Numerische Behandlung gewöhnlicher Differentialgleichungen. Report Jül-1274, Kernforschungsanlage Jülich, Febr. 1976.
Donelson, J., Hansen, E.: Cyclic Composite Multistep Predictor-Corrector Methods. SIAM J. Numer. Anal.8, 137–157 (1971).
Gear, C. W.: The Automatic Integration of Stiff Ordinary Differential Equations. In: Information Processing 68, Proc. IFIP, Edinburgh 1968 (Morrell A. J. H., ed.), Vol. 1, pp. 187–193. Amsterdam: North-Holland Publ. Comp. 1969.
Gragg, W. B., Stetter, H. J.: Generalized Multistep Predictor-Corrector Methods. J. ACM11, 188–209 (1964).
Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations. New York: J. Wiley 1962.
Spijker, M. N.: Stability and Convergence of Finite-Difference Methods. D. Phil. Thesis, Univ. of Leiden, 1968.
Spijker, M. N.: On the Structure of Error Estimates for Finite-Difference Methods. Numer. Math.18, 73–100 (1971).
Spijker, M. N.: On the Possibility of Two-Sided Error Bounds in the Numerical Solution of Initial Value Problems. Numer. Math.26, 271–300 (1976).
Stetter, H. J.: Analysis of Discretization Methods for Ordinary Differential Equations. Berlin-Heidelberg-New York: Springer 1973.
Skeel, R.: Analysis of Fixed-Stepsize Methods. SIAM J. Numer. Anal.13, 271–300 (1976).
Author information
Authors and Affiliations
Additional information
J. Heinhold zum 65. Geburtstag gewidmet.
Rights and permissions
About this article
Cite this article
Albrecht, P. Explicit, optimal stability functionals and their application to cyclic discretization methods. Computing 19, 233–249 (1978). https://doi.org/10.1007/BF02252202
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02252202