Abstract
We study the application of certain spline collocation methods to Volterra integro-differential equations of orderr where ther-th order derivative of the unknown solution occurs also in the kernel of the integral term. The analysis focuses on the question of the optimal discrete convergence order (at the knots of the approximating spline function).
Zusammenfassung
Diese Arbeit behandelt die numerische Lösung von Volterraschen Integrodifferential-gleichungenr-ter Ordnung, deren Kernfunktion dier-te Ableitung der gesuchten Lösung enthält, mittels Spline-Funktionen. In Mittelpunkt der Arbeit steht die Frage der optimalen diskreten Konvergenzordnung an den Knoten der approximierenden Spline-Funktion.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aguilar, M., Brunner, H.: Colocation methods for second-order Volterra integro-differential equations (to appear in Appl. Numer. Math.).
Brunner, H.: Implicit Runge-Kutta methods of optimal order for Volterra integro-differential equations. Math. Comp.42, 95–109 (1984).
Brunner, H.: High-order methods for the numerical solution of Volterra integro-differential equations. J. Comput. Appl. Math.15, 301–309 (1986).
Brunner, H., van der Houwen, P. J.: The Numerical Solution of Volterra Equations. Amsterdam-New York: North-Holland 1986.
Burton, T. A.: Volterra Integral and Differential Equations. New York: Academic Press 1983.
Denisenko, N. V., Yanovich, L. A.: One-step numerical methods for the solution of systems of linear Volterra integrodifferential equations of the second kind. Differential Equations19, 650–662 (1983).
Goldfine, A.: Taylor series methods for the solution of Volterra integral and integro-differential equations. Math. Comp.31, 691–707 (1977).
Hrusa, W. J., Nohel, J. A.: Global existence and asymptotics in one-dimensional nonlinear viscoelasticity. In: Trends and Applications of Pure Mathematics to Mechanics (P. G. Ciarlet and M. Roseau, eds.), pp. 165–187). Berlin-Heidelberg-New York: Springer (Lecture Notes in Phys., Vol. 195) 1984.
MacCamy, R. C.: An integro-differential equation with application in heat flow. Quart. Appl. Math.35, 1–19 (1977).
MacCamy, R. C.: A model for one-dimensional, nonlinear viscoelasticity. Quart. Appl. Math.35, 21–33 (1977).
Pouzet, P.: Etude, en vue de leur approximation numérique, des solutions d'équations intégrales et intégrodifférentielles de type Volterra pour des problèmes de conditions initiales. Thèse, Université de Strasbourg 1962.
Pouzet, P.: Systemes différentiels, équations intégrales et intégrodifférentielles. In: Procédures ALGOL en Analyse Numérique I, pp. 203–208. Paris: Centre National de la Recherche Scientifique 1967.
Volterra, V.: Theory of Functionals and of Integral and Integro-Differential Equations, pp. 147–149. New York: Dover Publ. 1959.
Yanovich, L. A.: A fourth-order numerical method for solving systems of linear integrodifferential equations of Volterra type (Russian). Dokl. Akad. Nauk BSSR28, 293–296 (1984).
Author information
Authors and Affiliations
Additional information
This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC Grant No. A9406).
Rights and permissions
About this article
Cite this article
Brunner, H. The approximate solution of initial-value problems for general Volterra integro-differential equations. Computing 40, 125–137 (1988). https://doi.org/10.1007/BF02247941
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02247941