D-stability and Kaps-Rentrop-methods | Computing Skip to main content
Log in

D-stability and Kaps-Rentrop-methods

D-Stabilität und Kaps-Rentrop-Verfahren

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper we give an analysis of the effect of stiff nonlinearities on the behavior of a Kaps-Rentrop method. To that end we introduce two quantities related to a simple model. The values of these quantities determine to some extent the behavior of a Kaps-Rentrop method in case of a strong coupling between the smooth component and the transient one. Numerical examples illustrate the theoretical results.

Zusammenfassung

In dieser Arbeit wird die Stabilität des Kaps-Rentrop-Verfahrens in die Anwesenheit nichtlinearer Steifheit (Stiffness) analysiert. Dazu werden mittels eines einfachen Modells zwei Größen introduziert. Die Werte dieser Größen reflektieren gewissermaßen das Verhalten eines Kaps-Rentrop-Verfahrens in die Anwesenheit einer bestimmten Kopplung zwischen die beiden Komponenten in das steife System gewöhnlicher Differentialgleichungen. Einige numerische Beispiele veranschaulichen die Analyse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Enright, W. H., Hull, T. E., Lindberg, B.: Comparing numerical methods for stiff systems of O.D.E.'s. BIT15, 10–48 (1975).

    Article  Google Scholar 

  2. Gottwald, B. A., Wanner, G.: A reliable Rosenbrock integrator for stiff differential systems. Computing26, 335–360 (1981).

    Google Scholar 

  3. Kaps, P., Rentrop, P.: Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations. Numer. Math.33, 55–68 (1979).

    Article  Google Scholar 

  4. Kaps, P., Wanner, G.: A study of Rosenbrock-type methods of high order. Numer. Math.38, 279–298 (1981).

    Article  Google Scholar 

  5. Shampine, L. F.: Implementation of Rosenbrock methods. TOMS8, 93–113 (1982).

    Article  Google Scholar 

  6. Stetter, H. J.: Towards a theory for discretizations of stiff differential systems. (Lecture Notes in Mathematics, Vol. 506, pp. 190–210.) Berlin-Heidelberg-New York: Springer 1976.

    Google Scholar 

  7. Veldhuizen, M. van: D-stability. SINUM18, 45–64 (1981).

    Google Scholar 

  8. Verwer, J. G.: Instructive experiments with some Runge-Kutta-Rosenbrock methods. Comp. & Math. with Appls.8, 217–229 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Veldhuizen, M. D-stability and Kaps-Rentrop-methods. Computing 32, 229–237 (1984). https://doi.org/10.1007/BF02243574

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02243574

AMS Subject Classifications

Key words

Navigation