Ein Iterationsverfahren für lineare Ungleichungssysteme | Computing Skip to main content
Log in

Ein Iterationsverfahren für lineare Ungleichungssysteme

An iterative method for linear inequalities

  • Published:
Computing Aims and scope Submit manuscript

Zusammenfassung

Ein Iterationsverfahren zur Berechnung einer Lösung eines linearen Ungleichungssystems wird angegeben und das Konvergenzverhalten unter verschiedenen Voraussetzungen diskutiert.

Abstract

An iterative method for the solution of a system of linear inequalities is given. The rate of convergence of the method is estimated under various assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Literatur

  1. Agmon, S.: The relaxation method for linear inequalities. Canad. J. Math.6, 382–392 (1954).

    Google Scholar 

  2. Davis, P. J.: A construction of nonnegative approximate quadratures. Math. Comp.21, 578–582 (1967).

    Google Scholar 

  3. Eckhardt, U.: Iterative Lösung linearer Ungleichungssysteme. Berichte der KFA Jülich, Jül-880-MA. August 1972.

  4. Eckhardt, U.: Psendo-complementary algorithms for mathematical programming. In: Lootsma, F., Hrsg.: Numerical Methods for Nonlinear Optimization, pp. 301–312. London-New York: Academic Press. 1972.

    Google Scholar 

  5. Gorr, W., S.-A. Gustafson, and K. O. Kortanek: Optimal control strategies for air quality standards and regulatory policy. School of Urban and Public Affairs, Institute of Physical Planning. Carnegie-Mellon University. Research Report No. 18, August 1971.

  6. Holladay, J. C.: A smoothest curve approximation. Mathematical Tables and Other Aids to Computation11, 233–243 (1957).

    Google Scholar 

  7. Hurwicz, L.: Programming in linear spaces. In: Arrow, K. J., L. Hurwicz, and H. Uzawa, eds.: Studies in LInear and Nonlinear Programming, pp. 38–102. Stanford, Ca.: Stanford University Press. 1958.

    Google Scholar 

  8. Knopp, K.: Theorie und Anwendung der unendlichen Reihen, 4. Aufl. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 11.) Berlin-Göttingen-Heidelberg: Springer. 1947.

    Google Scholar 

  9. Stoer, J., and C. Witzgall: Convexity and Optimization in Finite Dimensions I. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 163.) Berlin-Heidelberg-New York: Springer. 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckhardt, U. Ein Iterationsverfahren für lineare Ungleichungssysteme. Computing 12, 57–66 (1974). https://doi.org/10.1007/BF02239499

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02239499

Navigation