Synthesis of nonlinear observers: A harmonic-analysis approach | Theory of Computing Systems Skip to main content

Advertisement

Log in

Synthesis of nonlinear observers: A harmonic-analysis approach

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

This paper deals with the problem of synthesis of observers for nonlinear systems. Our method is based upon the technique of immersion into bilinear systems and representation theory. We consider bilinear systems and Killing systems, and show how to construct observers for such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bellman,Introduction to Matrix Analysis, McGraw Hill, New York, 1970.

    Google Scholar 

  2. A. Borel,Représentations des groupes localement compacts, Lectures Notes in Mathematics, Vol. 276, Springer-Verlag, Berlin, 1972, p. 98.

    Google Scholar 

  3. D. Bestle and M. Zeitz, Canonical form design for nonlinear observers with linearizable error dynamics,Internat. J. Control,23, 1981, 419–431.

    Google Scholar 

  4. G. Bornard, N. Couenne, and F. Celle, Regularly persistent observers for bilinear systems,Proceedings of the Colloque international automatique non linéaire. Nantes, June 1988.

  5. C. Bruni, G. Di Pillo, and G. Koch, On the mathematical models for bilinear systems,Ricerche Automat.,2, 1971, 11–26.

    Google Scholar 

  6. F. Celle, J. P. Gauthier, and K. Kazakos, Orthogonal representations of nonlinear systems and input-output maps,Systems Control Lett.,7, 1986, 365–372.

    Google Scholar 

  7. P. Crouch and C. Byrnes, Local accessibility, local reachability on representations of compact groups,Math. Systems Theory,19, 1988, 43–65.

    Google Scholar 

  8. J. Dixmier,Les C* algèbres et leurs représentations, Gauthier-Villard, Paris, 1984.

    Google Scholar 

  9. M. Fliess, Quelques remarques sur les observateurs non linéaires,Proceedings of the Colloque GRETSI, Nice, 1987.

  10. M. Fliess and I. Kupka, A finiteness criterion for nonlinear input-output differential systems,SIAM J. Control Optim.,21, 1983, 721–728.

    Google Scholar 

  11. M. Fliess and C. Reutenauer, Une application de l'algèbre différentielle aux systèmes réguliers (ou bilinéaires), inAnalysis and Optimizations of Systems Proceedings, Lectures Notes in Control and Information Sciences, Vol. 44, Springer-Verlag, Berlin, 1982, pp. 99–107.

    Google Scholar 

  12. Y. Funahashi, Stable state estimator for bilinear systems,Internat. J. Control,29, 1979, 181–188.

    Google Scholar 

  13. J. P. Gauthier and G. Bornard, Observability for anyu(t) of a class of bilinear systems,IEEE Trans. Automat. Control,26, 1981, 922–926.

    Google Scholar 

  14. J. P. Gauthier and F. Celle, Theory of dynamic observers for a class of nonlinear system,Proceedings of the MTNS, June 1987, Phoenix, Az, pp. 417–430.

  15. J. P. Gauthier and J. P. Guerin, Unitary immersions of nonlinear systems,Math. Systems Theory,19, 1986, 135–153.

    Google Scholar 

  16. J. P. Gauthier and D. Kazakos, Observabilité et observateurs de systèmes non linéaires,RAIRO APII Analyse des Systeme,21, 1987, 201–212.

    Google Scholar 

  17. R. Godement, Les fonctions de type positif et la théorie des groupes,Trans. Amer. Math. Soc.,63, 1948, 1–84.

    Google Scholar 

  18. O. Grasselli and A. Isidori, Deterministic state reconstruction and reachability of bilinear control processes,Proceedings of the Joint Automatic Control Conference, San Francisco, CA, 1977, pp. 1423–1427.

  19. O. Grasselli and A. Isidori, An existence theorem for observers of bilinear systems,IEEE Trans. Automat. Control,26, 1981, 1299–1301.

    Google Scholar 

  20. H. Hammouri and J. P. Gauthier, Bilinearization up to output injection,Systems Control Lett.,11, 1988, 139–149.

    Google Scholar 

  21. S. Hara and K. Furuta, Minimal order state observers for bilinear systems,Internat. J. Control,24, 1976, 705–718.

    Google Scholar 

  22. S. Helgason,Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.

    Google Scholar 

  23. G. Hochschild,The structure of Lie groups, Holden-day, San Francisco, CA, 1985.

    Google Scholar 

  24. D. Kazakos, Sur l'observabilité et les observateurs de systèmes non linéaires, Ph.D. Thesis, Laboratoire d'Automatique de Grenoble, January 1987.

  25. A. Kirillow,Elements of the Theory of Representations, Springer-Verlag, Berlin, 1976.

    Google Scholar 

  26. S. R. Kou, D. L. Elliot, and T. J. Tarn, Exponential observers for nonlinear dynamics systems,Inform. and Control,29, 1975, 204–216.

    Google Scholar 

  27. A. J. Krener and A. Isidori, Linearization by output injection and nonlinear observers,Systems Control Lett.,3, 1983, 47–52.

    Google Scholar 

  28. A. J. Krener, A decomposition theory for differentiable systems,SIAM J. Control Optim.,15, 1977, 813–829.

    Google Scholar 

  29. A. J. Krener and W. Respondek, Nonlinear observers with linear error dynamics,SIAM J. Control Optim.,23, 1985, 197–216.

    Google Scholar 

  30. H. Kwarkernaak and R. Sivan,Linear Optimal Control Systems, Wiley Interscience, New York, 1972.

    Google Scholar 

  31. J. Levine and R. Marino, Nonlinear systems immersion, observers and finite dimensional systems,Systems Control Lett.,7, 1986, 133–142.

    Google Scholar 

  32. D. G. Luenberger, Observers for multivariable systems,IEEE Trans. Automat. Control,11, 1966, 190–197.

    Google Scholar 

  33. R. S. Palais,A global formulation of the Lie theory of transformations group, Memoirs of the American Mathematical Society, No. 22, AMS, Providence, RI, 1957.

    Google Scholar 

  34. E. D. Sontag, On the observability of polynomial systems,SIAM J. Control Optim.,17, 1979, 139–151.

    Google Scholar 

  35. E. D. Sontag, Nonlinear regulation: the piecewise linear approach,IEEE Trans. Automat. Control,26, 1981, 346–358.

    Google Scholar 

  36. H. J. Sussmann, The “Bang-bang” problem for certain control systems in Gl(n, R),SIAM J. Control Optim.,10, 1972, p. 470–476.

    Google Scholar 

  37. H. J. Sussmann, Semi-group representations, bilinear approximation of input-output maps, and generalized inputs, inProceedings of the Mathematical Systems Theory Conference, Udine, 1975, Lecture Notes in Economics and Mathematical Systems, Vol. 131. Springer-Verlag, Berlin, pp. 172–191.

    Google Scholar 

  38. H. J. Sussmann, Minimal realizations and canonical forms for bilinear systems,J. Franklin Inst.,301, 1976, 593–604.

    Google Scholar 

  39. H. J. Sussmann, Existence and uniqueness of minimal realizations of nonlinear systems,Math. Systems Theory,10, 1977, 263–284.

    Google Scholar 

  40. H. J. Sussmann, Single input observability of continuous time systems,Math. Systems Theory,12, 1979, 371–393.

    Google Scholar 

  41. A. J. Van der Schaft, On nonlinear observers,IEEE Trans. Automat. Control,30, 1985, 1254–1256.

    Google Scholar 

  42. N. Vilenkin,Special Functions and the Theory of Group Representations, Translations of Mathematical Monographs, Vol. 22, American Mathematical Society, Providence, RI, 1968.

    Google Scholar 

  43. G. Warner,Harmonic Analysis on Semi-Simple Lie Groups, Springer-Verlag, Berlin, 1972.

    Google Scholar 

  44. D. Williamson, Observability of bilinear systems, with applications to biological control,Automatica,13, 1977, 243–254.

    Google Scholar 

  45. W. M. Wonham,Linear Multivariable Control—A Geometric Approach, 3rd edn., Springer-Verlag, New York, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celle, F., Gauthier, J.P., Kazakos, D. et al. Synthesis of nonlinear observers: A harmonic-analysis approach. Math. Systems Theory 22, 291–322 (1989). https://doi.org/10.1007/BF02088304

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02088304

Keywords

Navigation