Abstract
This paper deals with the problem of synthesis of observers for nonlinear systems. Our method is based upon the technique of immersion into bilinear systems and representation theory. We consider bilinear systems and Killing systems, and show how to construct observers for such systems.
Similar content being viewed by others
References
R. Bellman,Introduction to Matrix Analysis, McGraw Hill, New York, 1970.
A. Borel,Représentations des groupes localement compacts, Lectures Notes in Mathematics, Vol. 276, Springer-Verlag, Berlin, 1972, p. 98.
D. Bestle and M. Zeitz, Canonical form design for nonlinear observers with linearizable error dynamics,Internat. J. Control,23, 1981, 419–431.
G. Bornard, N. Couenne, and F. Celle, Regularly persistent observers for bilinear systems,Proceedings of the Colloque international automatique non linéaire. Nantes, June 1988.
C. Bruni, G. Di Pillo, and G. Koch, On the mathematical models for bilinear systems,Ricerche Automat.,2, 1971, 11–26.
F. Celle, J. P. Gauthier, and K. Kazakos, Orthogonal representations of nonlinear systems and input-output maps,Systems Control Lett.,7, 1986, 365–372.
P. Crouch and C. Byrnes, Local accessibility, local reachability on representations of compact groups,Math. Systems Theory,19, 1988, 43–65.
J. Dixmier,Les C* algèbres et leurs représentations, Gauthier-Villard, Paris, 1984.
M. Fliess, Quelques remarques sur les observateurs non linéaires,Proceedings of the Colloque GRETSI, Nice, 1987.
M. Fliess and I. Kupka, A finiteness criterion for nonlinear input-output differential systems,SIAM J. Control Optim.,21, 1983, 721–728.
M. Fliess and C. Reutenauer, Une application de l'algèbre différentielle aux systèmes réguliers (ou bilinéaires), inAnalysis and Optimizations of Systems Proceedings, Lectures Notes in Control and Information Sciences, Vol. 44, Springer-Verlag, Berlin, 1982, pp. 99–107.
Y. Funahashi, Stable state estimator for bilinear systems,Internat. J. Control,29, 1979, 181–188.
J. P. Gauthier and G. Bornard, Observability for anyu(t) of a class of bilinear systems,IEEE Trans. Automat. Control,26, 1981, 922–926.
J. P. Gauthier and F. Celle, Theory of dynamic observers for a class of nonlinear system,Proceedings of the MTNS, June 1987, Phoenix, Az, pp. 417–430.
J. P. Gauthier and J. P. Guerin, Unitary immersions of nonlinear systems,Math. Systems Theory,19, 1986, 135–153.
J. P. Gauthier and D. Kazakos, Observabilité et observateurs de systèmes non linéaires,RAIRO APII Analyse des Systeme,21, 1987, 201–212.
R. Godement, Les fonctions de type positif et la théorie des groupes,Trans. Amer. Math. Soc.,63, 1948, 1–84.
O. Grasselli and A. Isidori, Deterministic state reconstruction and reachability of bilinear control processes,Proceedings of the Joint Automatic Control Conference, San Francisco, CA, 1977, pp. 1423–1427.
O. Grasselli and A. Isidori, An existence theorem for observers of bilinear systems,IEEE Trans. Automat. Control,26, 1981, 1299–1301.
H. Hammouri and J. P. Gauthier, Bilinearization up to output injection,Systems Control Lett.,11, 1988, 139–149.
S. Hara and K. Furuta, Minimal order state observers for bilinear systems,Internat. J. Control,24, 1976, 705–718.
S. Helgason,Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
G. Hochschild,The structure of Lie groups, Holden-day, San Francisco, CA, 1985.
D. Kazakos, Sur l'observabilité et les observateurs de systèmes non linéaires, Ph.D. Thesis, Laboratoire d'Automatique de Grenoble, January 1987.
A. Kirillow,Elements of the Theory of Representations, Springer-Verlag, Berlin, 1976.
S. R. Kou, D. L. Elliot, and T. J. Tarn, Exponential observers for nonlinear dynamics systems,Inform. and Control,29, 1975, 204–216.
A. J. Krener and A. Isidori, Linearization by output injection and nonlinear observers,Systems Control Lett.,3, 1983, 47–52.
A. J. Krener, A decomposition theory for differentiable systems,SIAM J. Control Optim.,15, 1977, 813–829.
A. J. Krener and W. Respondek, Nonlinear observers with linear error dynamics,SIAM J. Control Optim.,23, 1985, 197–216.
H. Kwarkernaak and R. Sivan,Linear Optimal Control Systems, Wiley Interscience, New York, 1972.
J. Levine and R. Marino, Nonlinear systems immersion, observers and finite dimensional systems,Systems Control Lett.,7, 1986, 133–142.
D. G. Luenberger, Observers for multivariable systems,IEEE Trans. Automat. Control,11, 1966, 190–197.
R. S. Palais,A global formulation of the Lie theory of transformations group, Memoirs of the American Mathematical Society, No. 22, AMS, Providence, RI, 1957.
E. D. Sontag, On the observability of polynomial systems,SIAM J. Control Optim.,17, 1979, 139–151.
E. D. Sontag, Nonlinear regulation: the piecewise linear approach,IEEE Trans. Automat. Control,26, 1981, 346–358.
H. J. Sussmann, The “Bang-bang” problem for certain control systems in Gl(n, R),SIAM J. Control Optim.,10, 1972, p. 470–476.
H. J. Sussmann, Semi-group representations, bilinear approximation of input-output maps, and generalized inputs, inProceedings of the Mathematical Systems Theory Conference, Udine, 1975, Lecture Notes in Economics and Mathematical Systems, Vol. 131. Springer-Verlag, Berlin, pp. 172–191.
H. J. Sussmann, Minimal realizations and canonical forms for bilinear systems,J. Franklin Inst.,301, 1976, 593–604.
H. J. Sussmann, Existence and uniqueness of minimal realizations of nonlinear systems,Math. Systems Theory,10, 1977, 263–284.
H. J. Sussmann, Single input observability of continuous time systems,Math. Systems Theory,12, 1979, 371–393.
A. J. Van der Schaft, On nonlinear observers,IEEE Trans. Automat. Control,30, 1985, 1254–1256.
N. Vilenkin,Special Functions and the Theory of Group Representations, Translations of Mathematical Monographs, Vol. 22, American Mathematical Society, Providence, RI, 1968.
G. Warner,Harmonic Analysis on Semi-Simple Lie Groups, Springer-Verlag, Berlin, 1972.
D. Williamson, Observability of bilinear systems, with applications to biological control,Automatica,13, 1977, 243–254.
W. M. Wonham,Linear Multivariable Control—A Geometric Approach, 3rd edn., Springer-Verlag, New York, 1985.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Celle, F., Gauthier, J.P., Kazakos, D. et al. Synthesis of nonlinear observers: A harmonic-analysis approach. Math. Systems Theory 22, 291–322 (1989). https://doi.org/10.1007/BF02088304
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02088304