A sweepline algorithm for Voronoi diagrams | Algorithmica Skip to main content
Log in

A sweepline algorithm for Voronoi diagrams

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We introduce a geometric transformation that allows Voronoi diagrams to be computed using a sweepline technique. The transformation is used to obtain simple algorithms for computing the Voronoi diagram of point sites, of line segment sites, and of weighted point sites. All algorithms haveO(n logn) worst-case running time and useO(n) space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Aurenhammer and H. Edelsbrunner, An optimal algorithm for constructing the weighted Voronoi diagram in the plane,Pattern Recognition,17 (1984), 251–257.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. L. Bentley, B. W. Weide, and A. C. Yao, Optimal expected-time algorithms for closest-point problems,ACM Trans. Math. Software,6 (1980), 563–580.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. P. Chew and R. L. Drysdale, Voronoi diagrams based on convex distance functions,Proceedings of the Symposium on Computational Geometry, 1985, pp. 235–244.

  4. J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, Making data structures persistent,Proceedings of the 18th Annual ACM Symposium on Theory of Computing, 1986, pp. 109–121.

  5. H. Edelsbrunner, private communication, 1985.

  6. H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone subdivision, Technical Report, DEC Systems Research Center, Palo Alto, CA, 1984.

    Google Scholar 

  7. S. J. Fortune, Fast algorithms for polygon containment,Automata, Languages, and Programming, 12th Colloquium, Lecture Notes in Computer Science, Vol. 194, Springer-Verlag, New York, pp. 189–198.

  8. P. J. Green and R. Sibson, Computing Dirichlet tesselations in the plane,Comput. J.,21 (1977) 168–173.

    MathSciNet  Google Scholar 

  9. D. Kirkpatrick, Efficient computation of continuous skeletons,Proceedings of the 20th Annual Symposium on Foundations of Computer Science, 1979, pp. 18–27.

  10. D. T. Lee, Medial axis transformation of a planar shape,IEEE Trans. Pattern Analysis Machine Intel.,4 (1982), 363–369.

    Article  MATH  Google Scholar 

  11. D. T. Lee and R. L. Drysdale, Generalizations of Voronoi diagrams in the plane,Siam J. Comput.,10 (1981), 73–87.

    Article  MATH  MathSciNet  Google Scholar 

  12. D. T. Lee and B. J. Schacter, Two algorithms for constructing a Delauney triangulation,Internat. J. Comput. Inform. Sci.,9 (1980), 219–227.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Leven and M. Sharir, Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams, Technical Report 34/85, Tel Aviv University, 1985.

  14. D. Leven and M. Sharir, Intersection problems and applications of Voronoi diagrams, inAdvances in Robotics, Vol. I (J. Schwartz and C. K. Yap, eds), Lawrence Erlbaum, 1986.

  15. T. Ohya, M. Iri, and K. Murota, Improvements of the incremental method for the Voronoi diagram with computational comparison of various algorithms,J. Oper. Res. Soc. Japan,27 (1984), 306–336.

    MATH  MathSciNet  Google Scholar 

  16. F. P. Preparata, The medial axis of a simple polygon,Proceedings of the Sixth Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Vol. 53, Springer-Verlag, New York, 1977, pp. 443–450.

    Google Scholar 

  17. F. P. Preparata and M. I. Shamos,Computational Geometry: An Introduction, Springer-Verlag, New York, 1985.

    Google Scholar 

  18. M. I. Shamos and D. Hoey, Closest-point problems,Proceedings of the 16th Annual Symposium on Foundations of Computer Science, 1975, pp. 151–162.

  19. M. Sharir, Intersection and closest-pair problems for a set of planar discs,SIAM J. Comput.,14 (1985), 448–468.

    Article  MATH  MathSciNet  Google Scholar 

  20. R. Sedgewick,Algorithms, Addison Wesley, Reading, MA, 1983.

    MATH  Google Scholar 

  21. C. K. Yap, AnO(n logn) algorithm for the Voronoi diagram of a set of simple curve segments, NsYU-Courant Robotics Report No. 43 (submitted toSIAM J. Comput.).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Bernard Chazelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortune, S. A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987). https://doi.org/10.1007/BF01840357

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01840357

Key words

Navigation