Observability for two-dimensional systems | Theory of Computing Systems Skip to main content
Log in

Observability for two-dimensional systems

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

Sufficient conditions that a two-dimensional system with output is locally observable are presented. Known results depend on time derivatives of the output and the inverse function theorem. In some cases, no information is provided by these theories, and one must study observability by other methods. We dualize the observability problem to the controllability problem, and apply the deep results of Hermes on local controllability to prove a theorem concerning local observability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Kou, D. L. Elliot, and T. J. Tarn, Observability of nonlinear systems,Infor. Control, 22, 89–99 (1973).

    Google Scholar 

  2. R. Herman and A. J. Krener, Nonlinear controllability and observability,IEEE Trans. Autom. Contr., 22, 728–740 (1977).

    Google Scholar 

  3. H. Hermes, Controlled stability,Ann. Mat. Pur. Appl., 114, 103–119 (1977).

    Google Scholar 

  4. Kostyukovskii, Yu. M.-L., Observability of nonlinear controlled systems,Automat. i Telemeh., 9, 1384–1396 (1968).

    Google Scholar 

  5. Kostyukovskii, Yu. M.-L., Simple conditions of observability of nonlinear controlled systems,Automat. i Telemeh., 10, 1575–1584 (1968).

    Google Scholar 

  6. J. M. Fitts, On the observability of nonlinear systems with applications to nonlinear regression analysis, Symposium on Nonlinear Estimate Theory and its Applications, San Diego, 1970.

  7. T. Fujisawa and E. S. Kuh, Some results on existence and uniqueness of solutions to nonlinear networks,IEEE Trans. Circuit Theory, 18, 501–506 (1971).

    Google Scholar 

  8. E. S. Kuh and I. Hajj, Nonlinear circuit theory: resistive networks,Proc. IEEE, 59, 340–355 (1971).

    Google Scholar 

  9. E. W. Griffith and K. S. P. Kumar, On the observability of nonlinear systems, I,J. Math. Anal. Appl., 35, 135–147 (1971).

    Google Scholar 

  10. J. P. Gauthier and G. Bornard, Observability for anyu(t) of a class of nonlinear systems,IEEE Trans. on Autom. Contr., 26, 922–926.

  11. M. Fliess, The unobservability ideal for nonlinear systems,IEEE Trans. Autom. Contr., 26, 592–593, 1981.

    Google Scholar 

  12. A. Isidori, A. J. Krener, C. Gori-Giorgi and S. Monaco, The observability of cascade connected nonlinear systems, IFAC Congress, Kyoto, 1981.

  13. A. Isidori, Observabilite et observateurs des systemes nonlineaires in: Outils et modeles Mathematique pour l'automatique-l'Analyse de systemes et le traitment dus signal, I. D. Landau, Ed., C.N.R.S., Paris, pp. 295–305.

  14. H. Nijmeijer, Observability of a class of nonlinear systems: A geometric approach, preprint.

  15. H. Hermes, On local and global controllability,SIAM J. Contr., 12, 252–261 (1974).

    Google Scholar 

  16. H. Hermes, On necessary and sufficient conditions for local controllability along a reference trajectory, Geometric Methods in Systems Theory, D. Q. Mayne and R. W. Brockett, Eds., Dordrecht, Holland: Reidel, 1973.

    Google Scholar 

  17. H. Hermes, Local controllability and sufficient conditions in singular problems,J. Differential Equations, 20, 213–232 (1976).

    Google Scholar 

  18. H. Hermes, Local controllability and sufficient conditions in singular problems, II.,SIAM J. Control, 18, 1049–1062, 1976.

    Google Scholar 

  19. H. Hermes, On local controllability, 20th IEEE Conference on Decision and Control, San Diego, 548–550 (1981).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by NASA Ames Research Center under Grant NAG2-189 and the Joint Services Electronics Program under ONR Contract N0014-76-C1136.

Research supported by NASA Ames Research Center under Grant NAG2-203 and the Joint Services Electronics Program under ONR Contract N0014-76-C1136.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, L.R., Su, R. Observability for two-dimensional systems. Math. Systems Theory 17, 159–166 (1984). https://doi.org/10.1007/BF01744438

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01744438

Keywords

Navigation