Abstract
Sufficient conditions that a two-dimensional system with output is locally observable are presented. Known results depend on time derivatives of the output and the inverse function theorem. In some cases, no information is provided by these theories, and one must study observability by other methods. We dualize the observability problem to the controllability problem, and apply the deep results of Hermes on local controllability to prove a theorem concerning local observability.
Similar content being viewed by others
References
S. R. Kou, D. L. Elliot, and T. J. Tarn, Observability of nonlinear systems,Infor. Control, 22, 89–99 (1973).
R. Herman and A. J. Krener, Nonlinear controllability and observability,IEEE Trans. Autom. Contr., 22, 728–740 (1977).
H. Hermes, Controlled stability,Ann. Mat. Pur. Appl., 114, 103–119 (1977).
Kostyukovskii, Yu. M.-L., Observability of nonlinear controlled systems,Automat. i Telemeh., 9, 1384–1396 (1968).
Kostyukovskii, Yu. M.-L., Simple conditions of observability of nonlinear controlled systems,Automat. i Telemeh., 10, 1575–1584 (1968).
J. M. Fitts, On the observability of nonlinear systems with applications to nonlinear regression analysis, Symposium on Nonlinear Estimate Theory and its Applications, San Diego, 1970.
T. Fujisawa and E. S. Kuh, Some results on existence and uniqueness of solutions to nonlinear networks,IEEE Trans. Circuit Theory, 18, 501–506 (1971).
E. S. Kuh and I. Hajj, Nonlinear circuit theory: resistive networks,Proc. IEEE, 59, 340–355 (1971).
E. W. Griffith and K. S. P. Kumar, On the observability of nonlinear systems, I,J. Math. Anal. Appl., 35, 135–147 (1971).
J. P. Gauthier and G. Bornard, Observability for anyu(t) of a class of nonlinear systems,IEEE Trans. on Autom. Contr., 26, 922–926.
M. Fliess, The unobservability ideal for nonlinear systems,IEEE Trans. Autom. Contr., 26, 592–593, 1981.
A. Isidori, A. J. Krener, C. Gori-Giorgi and S. Monaco, The observability of cascade connected nonlinear systems, IFAC Congress, Kyoto, 1981.
A. Isidori, Observabilite et observateurs des systemes nonlineaires in: Outils et modeles Mathematique pour l'automatique-l'Analyse de systemes et le traitment dus signal, I. D. Landau, Ed., C.N.R.S., Paris, pp. 295–305.
H. Nijmeijer, Observability of a class of nonlinear systems: A geometric approach, preprint.
H. Hermes, On local and global controllability,SIAM J. Contr., 12, 252–261 (1974).
H. Hermes, On necessary and sufficient conditions for local controllability along a reference trajectory, Geometric Methods in Systems Theory, D. Q. Mayne and R. W. Brockett, Eds., Dordrecht, Holland: Reidel, 1973.
H. Hermes, Local controllability and sufficient conditions in singular problems,J. Differential Equations, 20, 213–232 (1976).
H. Hermes, Local controllability and sufficient conditions in singular problems, II.,SIAM J. Control, 18, 1049–1062, 1976.
H. Hermes, On local controllability, 20th IEEE Conference on Decision and Control, San Diego, 548–550 (1981).
Author information
Authors and Affiliations
Additional information
Research supported by NASA Ames Research Center under Grant NAG2-189 and the Joint Services Electronics Program under ONR Contract N0014-76-C1136.
Research supported by NASA Ames Research Center under Grant NAG2-203 and the Joint Services Electronics Program under ONR Contract N0014-76-C1136.
Rights and permissions
About this article
Cite this article
Hunt, L.R., Su, R. Observability for two-dimensional systems. Math. Systems Theory 17, 159–166 (1984). https://doi.org/10.1007/BF01744438
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01744438