A general class of Markov processes with explicit matrix-geometric solutions | OR Spectrum Skip to main content
Log in

A general class of Markov processes with explicit matrix-geometric solutions

  • Theoretical Papers
  • Published:
Operations-Research-Spektrum Aims and scope Submit manuscript

Summary

We consider a class of Markov chains for which the stationary probability vector, when it exists, is of the matrix-geometric form. The essential step in the computational algorithm usually is the evaluation of a matrixR. We consider two general cases for which that matrix is explicitly determined.

Zusammenfassung

In der Bedienungstheorie treten Markovketten auf, deren Übergangsmatrizen blocktridiagonal sind. Die stationären Verteilungen lassen sich unter zusätzlichen Voraussetzungen mit Hilfe einer ResolventenmatrixR ausdrücken. Sie ist im allgemeinen als Lösung einer inR quadratischen Matrixgleichung erhältlich. Wir beweisen, daß in zwei Sonderfällen die MatrixR jeweils einer linearen Gleichung genügt und leiten diese Gleichung her. Damit wird die ResolventenmatrixR leichter zugänglich. In beiden Fällen wird zugelassen, daß die MatrizenR keine endliche Reihenanzahl haben. Das Auftreten beider Sonderfälle wird durch Beispiele aus der Bedienungstheorie belegt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chung KL (1967) Markov chains with stationary transition probabilities, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Fraser AG, Morgan SP (1984) Queueing and framing disciplines for a mixture of data traffic types. AT & T Bell Lab Tech J 63:1061–1087

    Google Scholar 

  3. Gillent F, Latouche G (1983) Semi-explicit solutions forM/PH/1-like queueing systems. Eur J Oper Res 13:151–160

    Article  Google Scholar 

  4. Neuts MF (1976) Moment formulas for the Markov renewal branching process. Adv Appl Probab 8:690–711

    Article  Google Scholar 

  5. Neuts MF (1981) Matrix-geometric solutions — An algorithmic approach. The Johns Hopkins University Press, Baltimore, Md

    Google Scholar 

  6. Ramaswami V (1982) The busy period of queues which have a matrix-geometric steady state probability vector. Opsearch 19:238–261

    Google Scholar 

  7. Rege KM, Doshi BT (1985) Analysis of a multistage queue. AT & T Bell Tech J 64:369–388

    Google Scholar 

  8. Schräge LE (1967) The queueM/G/1 with feedback to lower priority queues. Manage Sci 13:466–474

    Article  Google Scholar 

  9. Tweedie RL (1982) Operator-geometric stationary distributions for Maxkov chains with applications to queueing models. Adv Appl Probab 14:368–391

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramswami, V., Latouche, G. A general class of Markov processes with explicit matrix-geometric solutions. OR Spektrum 8, 209–218 (1986). https://doi.org/10.1007/BF01721131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01721131

Keywords

Navigation