The tabu search metaheuristic: How we used it | Annals of Mathematics and Artificial Intelligence Skip to main content
Log in

The tabu search metaheuristic: How we used it

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

A general description of tabu search is given and various applications to optimization problems are presented. Some guidelines for applying the tabu metaheuristic are exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. E. Amaldi, Problèmes d'apprentissage dans les réseaux de neurones, Diploma Project, Swiss Federal Institute of Technology in Lausanne, Switzerland (December 1987).

    Google Scholar 

  2. Ch. Benke, Die Tabu-Search Methode als möglicher Lösungsansatz für das Stundenplanproblem, Institut für Höhere Studien, Vienna, Austria (August 1988).

    Google Scholar 

  3. J. Bovet, C. Constantin, and D. de Werra, A convoy scheduling problem, to appear in Discr. Appl. Math.

  4. R.M. Brady, Optimization strategies gleaned from biological evolution, Nature 317 (1985) 804–806.

    Article  Google Scholar 

  5. C. Friden, A. Hertz and D. de Werra, STABULUS: a technique for finding stable sets in large graphs with tabu search, Computing 42 (1989) 35–44.

    Article  MATH  Google Scholar 

  6. F. Glover and C. McMillan, The general employee scheduling problem: an integration of management science and artificial intelligence, Computers and Oper. Res. 13 (1986) 563–593.

    Article  Google Scholar 

  7. F. Glover, Tabu search methods in artificial intelligence and operations research, ORSA Artificial Intelligence Newsletter 1 (1987).

  8. F. Glover, Tabu Search, Part I, ORSA J. Computing 1 (1989) 190–206.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Glover, Future paths for integer programming and links to artificial intelligence, Computers and Oper. Res. 13 (1986) 533–549.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Gronalt, Die Verwendung der Tabu-Methode zur Lösung eines “Loading Problems”, Projectreport, Institut für Höhere Studien, Vienna, Austria (June 1988).

    Google Scholar 

  11. P. Hansen and B. Jaumard, Algorithms for the maximum satisfiability problem, RUTCOR Report 43-87, Rutgers University (November 1987).

  12. P. Hansen, The steepest ascent mildest descent heuristic for combinatorial programming, paper presented at theCongress on Numerical Methods in Combinatorial Optimization, Capri, Italy (1986).

  13. A. Hertz and D. de Werra, Using tabu search techniques for graph coloring, Computing 29 (1987) 345–351.

    Article  Google Scholar 

  14. A. Hertz, Three new adaptations of tabu search techniques, paper presented atEURO IX-TIMS XXVIII, Paris (1988).

  15. A. Hertz, Tabu search for large scale timetabling problems, submitted for publication.

  16. J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA 79 (1982) 2554–2558.

    Article  MathSciNet  Google Scholar 

  17. J. Knox, An application of tabu search to the symmetric Traveling Salesman Problem, Ph. D. Thesis (in progress), University of Colorado, Boulder, CO (1988).

    Google Scholar 

  18. W.A. Little, Math. Biosci. 19 (1974) 101.

    Article  MATH  Google Scholar 

  19. N. Metropolis, A. Rosenbluth, M. Rosenbluth and A. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21 (1953) 1087–1092.

    Article  Google Scholar 

  20. Ch. Wendelin, Graph partitioning with the aid of the tabu method (a new approach for solving grouping problems in FMS), Projectreport, Institut für Höhere Studien, Vienna, Austria (June 1988).

    Google Scholar 

  21. M. Widmer and A. Hertz, A new approach for solving the Flow Shop sequencing problem, Europ. J. Oper. Res. 41 (1989) 186–193.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hertz, A., de Werra, D. The tabu search metaheuristic: How we used it. Ann Math Artif Intell 1, 111–121 (1990). https://doi.org/10.1007/BF01531073

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01531073

Keywords

Navigation