Abstract
The user-acquainted feature collects user-specific data regarding the types of advice that have been sought over time and uses this historical information to update the probabilities to affect the firing of its rules and the ordering of the recommendations of the expert system. These updates are done on auser-specific basis so that the expert can more closely emulate a true expert by providing more informed advice. One example of a place where evidence suggests that such a feature would be useful is in the area of debugging of computer programs, especially in support of novice programmers who tend, as individuals, to commit similar classes of errors over time, but who, as a group, commit very different types of errors. We conjecture that the user-acquainted feature, which can keep track of the tendencies of the users and take them into account in the evaluation of diagnostics, will be more effectiveand efficient in determining the fault. In this paper, we discuss the statistical analyses necessary to implement this feature in an expert system for debugging errors in SAS.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
An AI productivity roundtable,3rd Artificial Intelligence Satellite Symp., sponsored by Texas Instruments (April 8, 1987).
J.R. Anderson and B.J. Reiser, The LISP tutor, Byte 10(4) (April, 1985).
M.T., Harandi, A knowledge-based programming support tool,Proc. Conf. on Trends and Applications, Automating Intelligent Behaviour, IEEE (1983) pp. 233–239.
J.R. Hartley and D.H. Sleeman, Towards intelligent teaching systems, Int. J. Man-Machine Studies (1973).
W.L. Johnson and E. Soloway, PROUST, Byte 10(4) (April, 1985).
F. Pipitone, The FIS electronics troubleshooting system, Computer: IEEE Computer Society (July, 1986) 68–76.
W.B. Rausch-Hindin,Artificial Intelligence In Business, Science and Industry, vol. 2 (Prentice-Hall, Englewood Cliffs, NJ, 1985).
C. Rich and H.E. Shrobe, Design of a programmer's apprentice, in:Artificial Intelligence: An MIT Perspective, eds. P.H.W. Henry and R.H. Brown (The MIT Press, Cambridge, MA, 1979).
M. Schindler, Artificial intelligence begins to pay off with expert systems for engineering, Electronic Design (August, 1984) 106–146.
R.L. Sedlmeyer, W.B. Thompson and P.E. Johnson, Diagnostic reasoning in software fault localization,IJCAI-83, Karlsruhe (1983) pp. 29–31.
S.E. Dreyfus, Formal models vs human situational understanding: Inherent limitations on the modeling of business expertise, Office: Technology and People 1 (August, 1982) 133–165.
L.F. Pau, Survey of expert systems for fault detection, test generation and maintenance, Expert Systems 3(2) (April, 1986) 100–111.
D.R. Miller, A continuity theorem and some counterexamples for the theory of maintained systems, Technical Report no. 66, Department of Statistics, University of Missouri — Columbia (December, 1975).
V.L. Sauter and L.A. Madeo, The need for user-acquainted expert systems for fault detection in the business environment, submitted to Information Systems Research (September, 1988).
K.B. McKeithen, J.S. Reitman, H.H. Reuter and S.C. Hirtle, Knowledge organization and skill differences in computer programmers, Cognitive Psychol. 13 (1981) 307–325.
I. Vessey, Expertise in debugging computer programs: A process analysis, Int. J. Man-Machine Studies 23 (1985) 459–494.
M.J. Schervish, Comments on some axioms for combining expert judgments, Management Sci. 32(3) (March, 1986) 306–311.
A.B. Shahidul-Hussain, On the correctness of some sequential classification schemes in pattern recognition, IEEE Trans. Computers 21(3) (March, 1972) 318–320.
R.L. Winkler, Expert resolution, Management Sci. 32(3) (March, 1986) 298–303.
D. St. Clair, W.E. Bond and B.B. Flachsbart, Using output to evaluate and refine rules in rule-based expert systems,Proc. 3rd Annual Conf. on Artificial Intelligence for Space Applications, Huntsville, AL (November, 1987).
J. Pearl, On evidential reasoning in a hierarchy of hypotheses, Artificial Intelligence 28(1) (1986) 9–15.
W.A. Gale, Knowledge-based acquisition for a statistical consulting system, Int. J. Man-Machine Studies 26(1) (January 1987) 55–64.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Sauter, V.L., Madeo, L.A. Using statistics to make expert systems “user-acquainted”. Ann Math Artif Intell 2, 309–326 (1990). https://doi.org/10.1007/BF01531014
Issue Date:
DOI: https://doi.org/10.1007/BF01531014