Preemptive scheduling with staircase and piecewise linear resource availability | Mathematical Methods of Operations Research Skip to main content
Log in

Preemptive scheduling with staircase and piecewise linear resource availability

  • Published:
Zeitschrift für Operations Research Aims and scope Submit manuscript

Zusammenfassung

Es werden Variationen für Reihenfolgeprobleme mit Unterbrechungen betrachtet bei denen die Aufgaben mit unterschiedlicher Bearbeitungszeit auf den einzelnen Maschinen gelöst werden können. Insbesondere wird ein Problem mit nichterneuerbaren Resourcen und zeitabhängigen Nachfragen behandelt und es wird gezeigt, daß dieses Problem durch eine Erweiterung der 2-Phasenmethode gelöst werden kann. In Phase 1 wird ein LP gelöst, während in Phase 2 ein zugehöriger Schedule konstruiert wird. Diese Konstruktion erfolgt durch die Bestimmung ganzzahliger Vektoren, die Ecken eines Polyeders entsprechen, der durch eine vollständig unimodulare Matrix definiert wird. In Spezialfällen reduziert sich dies auf Flußprobleme.

Abstract

Some variations are presented for the preemptive scheduling problem on unrelated processors, one shows how nonrenewable resources with a time-varying supply may be taken into account in an extension of the two-phase method; phase 1 consists in solving an LP problem and phase 2 is the construction of the schedule; such a construction reduces to the determination of integral vectors in polyhedra defined by totally unimodular matrices. In special cases, this is simply a compatible flow problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

References

  1. Berge C (1983) Graphes. Gauthier-Villars, Paris

    Google Scholar 

  2. Blazewicz J, Cellary W, Slowinski R, Weglarz J (1976) Deterministy czne problemy szeregowaia zadan na rownoleglych procesorach, Cz. I. Zbiory Zadanniezaleznych, Podstawy Sterowania 6:155–178

    Google Scholar 

  3. Lawler E-L, Labetoulle J (1978) On preemptive scheduling of unrelated processors by linear programming. J Assoc Comput Mach 25:612–619

    Google Scholar 

  4. Slowinski R (1980) Two approches to problems of resource allocation among project activities — a comparative study. J Opl Res Soc 31:711–723

    Google Scholar 

  5. Slowinski R (1979) Cost-minimal preemptive scheduling of independent jobs with release and due dates on open shop under resource constraints. Information Processing Letters 9:233–237

    Google Scholar 

  6. Slowinski R (1981) L'ordonnancement des tâches préemptives sur les processeurs indépendants en présence de ressources supplémentaires. RAIRO Informatique 15:155–166

    Google Scholar 

  7. Slowinski R (1984) Preemptive scheduling of independent jobs on parallel machines subject to financial constraints. European J of Operational Research 15:366–373

    Google Scholar 

  8. Weglarz J (1979) New models and procedures for resource allocation problems. Proc. of the 6th INTERNET Congress, vol 2. VDI-Verlag GmbH, Düsseldorf, pp 521–530

    Google Scholar 

  9. Weglarz J (1981) Project scheduling with continuously-divisible, doubly constrained resources. Management Sci 27:1040–1053

    Google Scholar 

  10. de Werra D (1984) Preemptive scheduling, linear programming and network flows. SIAM J on Algebraic and Discrete Methods 5:11–20

    Google Scholar 

  11. de Werra D (1984) A decomposition property of polyhedra. Mathematical Programming 30:261–266

    Google Scholar 

Additional references on preemptive scheduling

  1. Gonzalez T, Sahni S (1978) Preemptive scheduling of uniform processor systems. J ACM 25: 92–101

    Google Scholar 

  2. Sahni S, Gonzalez T (1976) Preemptive scheduling of two unrelated machines. Techn. Report 76-16, Univ. of Minnesota, Minneapolis

    Google Scholar 

  3. Blazewicz J, Cellary W, Slowinski R, Weglarz J (1986) Scheduling under resource constraints — deterministic models. Annals of Operations Research (Baltzer AG, Basel)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cochand, M., de Werra, D. & Slowinski, R. Preemptive scheduling with staircase and piecewise linear resource availability. ZOR - Methods and Models of Operations Research 33, 297–313 (1989). https://doi.org/10.1007/BF01416077

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01416077

Key words

Navigation