Optimal parallel algorithms for constructing and maintaining a balancedm-way search tree | International Journal of Parallel Programming Skip to main content
Log in

Optimal parallel algorithms for constructing and maintaining a balancedm-way search tree

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

We present parallel algorithms for constructing and maintaining balancedm-way search trees. These parallel algorithms have time complexity O(1) for ann processors configuration. The formal correctness of the algorithms is given in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching. Addison-Wesley, reading, Mass. (1973).

    Google Scholar 

  2. E. Horowitz and S. Sahni,Fundamentals of Data Structures, Computer Science Press, Potomac, Md. (1982).

    Google Scholar 

  3. P. K. Armstrong, U. S. Patent 4131947 (December 26, 1978).

  4. M. J. Attallah and S. R. Kosaraju, A generalized dictionary machine for VLSI,IEEE Trans. on Comput. C-34(2):151–155 (February 1985).

    Google Scholar 

  5. J. L. Bentley and H. T. Kung, Two papers on tree-structured paralel computer, Dep. Comput. Sci. Carnegie Mellon University, Pittsburge, PA, Report CMU-CS-79-142 (1979).

  6. M. J. Carey and C. D. Thompson, An efficient implementation of search trees on [logN+1] processors,IEEE Trans. on Comput. C-33(11):1038–1041.

  7. C. E. Leiserson, Systolic priority queues, Dep. Comput. Sci. Carnegie Mellon University, Pittsburge, PA, Report CMU-CS-79-115 (1979).

    Google Scholar 

  8. T. A. Ottmann, A. L. Rosenberg, and L. J. Stockmeyer, A dictionary machine (for VLSI),IEEE Trans. on Comput. C-31:892–897 (September 1982).

    Google Scholar 

  9. A. K. Somani and V. K. Agarwal, An efficient VLSI dictionary machine,Proc. 11th Annu. ACM Intl. Symp. on Comput. Arch., pp. 142–150 (June 1984).

  10. Y. Tanaka, Y. Nozaka, and A. Masuyama, Pipeline searching and sorting modules as components of data flow database computer,Proc. Int. Fed. Inform. Processing, pp. 427–432 (October 1980).

  11. A. L. Fisher, Dictionary Machines with a small number of processors,Proc. 11th Annu. ACM Int. Symp. on Comput. Arch., pp. 151–156 (June 1984).

  12. H. Chang and S. S. Iyengar, Efficient algorithms to globally balance a binary search tree,Com. ACM 27:695–702 (1984).

    Google Scholar 

  13. A. Moitra and S. S. Iyengar, A maximally parallel balancing algorithm for obtaining complete balanced binary trees,IEEE-T-SE, pp. 442–449 (1986).

  14. Q. F. Stout and B. L. Warren, Tree rebalancing in optimal time and space, U. of Michigan Computing Research Laboratory, Ann Arbor, MI, CRL-TR-42-84.

  15. U. Manber, Concurrent Maintenance of Binary Search Trees,IEEE Trans. on Soft. Engineering SE-10(6):777–784 (November 1984).

    Google Scholar 

  16. R. E. Tarjan and U. Vishkin, Finding biconnected components and computing tree functions in logarithmic parallel timeFOCS (1984).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekel, E., Peng, S. & Lyengar, S.S. Optimal parallel algorithms for constructing and maintaining a balancedm-way search tree. Int J Parallel Prog 15, 503–528 (1986). https://doi.org/10.1007/BF01407411

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01407411

Key Words

Navigation