On the period length of generalized inversive pseudorandom number generators | Applicable Algebra in Engineering, Communication and Computing Skip to main content
Log in

On the period length of generalized inversive pseudorandom number generators

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Eichenauer and Lehn's inversive congruential pseudorandom number generator is generalized for arbitrary composite moduli. The maximal period is determined and simple constructive methods are given to find parameters for these generators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ben-Or, M.: Probabilistic Algorithms in Finite Fields. Proc. IEEE Symp. Found. Comp. Sci. 394–398 (1981)

  2. Eichenauer-Herrmann, J.; Inversive Congruential Pseudorandom Numbers: a Tutorial. Int. Statistical Rev.60(2), 167–176 (1992)

    Google Scholar 

  3. Eichenauer, J., Lehn, J.: A non-linear congruential pseudo random number generator. Statist. Papers27, 315–326 (1986)

    Google Scholar 

  4. Eichenauer, J., Lehn, J., Topuzoglu, A.: A non-linear congruential pseudo random number generator with power of two modulus. Math. Comp.51, 757–759 (1988)

    Google Scholar 

  5. Eichenauer-Herrmann, J., Topuzoglu, A.: On the period length of congruential pseudorandom number sequences generated by inversions. J. Comp. Appl. Math.31, 87–96 (1990)

    Google Scholar 

  6. Flahive, M., Niederreiter, H.: On Inversive Congruential Generators for Pseudorandom Numbers. In: Finite Fields, Coding Theory, and Advances in Communications and Computing, Mullen, G. L., Shiue, P. J.-S. (eds.), pp. 75–80. New York: Dekker 1992

    Google Scholar 

  7. Gordon, J.: Fast Multiplicative Inverse In Modular Arithmetic. In: Beker, Piper (eds.) Cryptography and Coding, pp. 269–279. Oxford: Clarendon Press 1989

    Google Scholar 

  8. Hardy, G. H., Wright, E. M.: An introduction to the theory of numbers. Fifth edition, Oxford 1979

  9. Landau, E.: Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie. Hirzel 1927, Reprint: Chelsea, New York, 1950

  10. Lidl, R., Niederreiter, H.: Finite Fields, Encyclopedia of Mathematics and its Applications. Vol. 20, University Press: Cambridge 1984

    Google Scholar 

  11. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Pennsylvania: Philadelphia 1992

    Google Scholar 

  12. Massey, J. L.: Cryptography: Fundamentals and Applications. (Copies of Transparencies), Advanced Technology Seminars, 1990

  13. Rabin, M. O.: Probabilistic Algorithms in Finite Fields. SIAM J. Comput.9, 273–280 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, K. On the period length of generalized inversive pseudorandom number generators. AAECC 5, 255–260 (1994). https://doi.org/10.1007/BF01225640

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01225640

Keywords

Navigation