Abstract
We consider a queueing system with bulk arrivals entering a finite waiting room. Service is provided by a single server according to the limited service discipline with server vacation times. We determine the distributions of the time-dependent and stationary queue length in terms of generating functions by a symbolic operator method.
Similar content being viewed by others
References
H. Bruneel, Analysis of an infinite buffer system with random server interruptions, Comp. & Ops. Res. 11 (1984) 373–386.
J.F. Chang and R.F. Chang, The application of the residue theorem to the study of a finite queue with batch Poisson arrivals and synchronous servers, SIAM J. Appl. Math. 44 (1984) 646–656.
J.W. Cohen,On Regenerative Processes in Queueing Theory (Springer Berlin-Heidelberg-New York, 1976).
G.W. Forbes, Truncation and manipulation of multivariate power series, J. Comp. and Appl. Math. 15 (1986) 27–36.
G.H. Hsu and K. Bosch, Finite dams with double level of release, Z.O.R. 27 (1983) 83–106.
J.J. Hunter,Mathematical Techniques of Applied Probability, Vol. 2: Discrete Models: Techniques and Applications (Academic Press, New York-San Francisco-London, 1983).
M. Kramer, Wartesysteme beschränkter Kapazität mit Sperrphasen und relativen Prioritäten, in: Messung, Modellierung und Bewertung von Rechensystemen, eds. P.J. Kühn and K.M. Schulz, Informatik-Fachberichte Nr. 61, 150–164 (Springer Berlin-Heidelberg-New York, 1983).
M. Kramer, Computational analysis of a queueing system with vacation times and non-exhaustive service, Stochastic Models 4 (1988) 151–159.
N.U. Prabhu,Queues and Inventories (J. Wiley, New York-London-Sydney, 1965).
H. Takagi,Analysis of Polling Systems (MIT Press, Cambridge Mass., 1986).
M. Zafirovic-Vukotic and I.G. Niemegeers, Analytical models of the slotted ring protocols in HSLANs, in:High Speed Local Area Networks, eds. O. Spaniol and A. Danthine (North-Holland, Amsterdam-New York-Oxford-Tokyo, 1987) 115–134.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kramer, M. Analysis of a buffer queueing problem in discrete time. Queueing Syst 5, 369–379 (1989). https://doi.org/10.1007/BF01225325
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01225325