Abstract
Recently complex function techniques have been developed for the analysis of queueing systems which need for their modelling a two dimensional state space. A variety of computer- and communication networks gives rise to such two-dimensional queueing systems and their analysis is needed for the performance evaluation of these aggregates. The present study reviews these developments
Similar content being viewed by others
References
J.P.C. Blanc, Asymptotic analysis of a queueing system with a two-dimensional state space, J. Appl. Prob. 21 (1984) 870–886.
J.P.C. Blanc, The relaxation time of two queueing systems in series, Stoch. Models 1 (1985) 1–16.
J.P.C. Blanc, A numerical study of a coupled processor model, report 87-01, Dept. Math. Univ. Limburg, Neth. 1987.
J.P.C. Blanc and E.A. Van Doorn, Relaxation times for queueing systems, in:Proc. C.W.I. Symposium Mathematics and Computer Science, ed. J.W. Bakker, M. Hazewinkel and J.K. Lenstra, C.W.I. Monograph (North-Holland Publ. Co., Amsterdam, 1984) p. 139–162.
J.P.C. Blanc, Iasnogoradski and Ph. Nain, Analysis of the M/G/1-/M/1 queueing model, Report INRIA, Center de Sophia Antipolis, 1986.
O.J. Boxma, Two symmetric queues with alternating service and switching times, In:Performance '84, ed. E. Gelenbe (North-Holland Publ. Co., Amsterdam, 1984) p. 409–431.
O.J. Boxma, Models of two queues: a few new views, In:Teletraffic Analysis and Comp. Perf. Evaluation, ed. O.J. Boxma, J.W. Cohen and H.C. Tijms (North-Holland Publ. Co., Amsterdam, 1986) p. 75–98.
M.A. Brun and G. Fayolle, The distribution of the resequencing time in a simple fork-join system, In:Appl. Math., Perf., Reliab. Models Comp. Comm. Syst., ed. G. Iazeolla, F.J. Courtois and O.J. Boxma (North-Holland Publ. Co. Amsterdam, 1987) p. 203–212.
E.G. Coffman, G. Fayolle and I. Mitrani, Analysis of sojourn times in a tandem queue with overtaking; reduction to a boundary value problem, Stochastic Models 2 (1986) 43–65.
E.G. Coffman, G. Fayolle and I. Mitrani, Two queues with alternating service periods, Report A.T. & T Bell Labs. Murray Hill, 1987, to appear in:Proc. Performance '87, ed. P.J. Courtois and G. Latouche.
J.W. Cohen,The Single Server Queue (North-Holland Publ. Co., Amsterdam, 1982) revised edition.
J.W. Cohen, The Wiener-Hopf technique in applied probability, In:Perspectives in Probability and Statistics, ed. J. Gani (Academic Press, London, 1975) p. 145–156.
J.W. Cohen, A two-queue, one-server model with priority for the longer queue, Queueing Systems Theor. Appl. 2 (1987) 261–284.
J.W. Cohen, A queueing system with semi-exhaustive alternating service, To appear in:Performance '87, ed. P.J. Courtois and G. Latouche.
J.W. Cohen, On a functional relation in three complex variables, preprint 359, Math. Inst., Univ. Utrecht, 1984.
J.W. Cohen, On the analysis of parallel independent processors, preprint 374, Math. Inst., Univ. Utrecht, 1985.
J.W. Cohen, On entrance time distributions for two-dimensional random walks, in:Proc. Appl. Math. & Perf. Reliability Models of Compl. Commun. Syst., ed. G. Iazeolla, P.J. Courtois and O.J. Boxma (North-Holland Publ. Co., Amsterdam, 1987) p. 25–42.
J.W. Cohen, On entrance times of a homogeneousN-dimensional random walk: an identity, to appear in:A Celebration of Probability, 1988, ed. J. Gani.
J.W. Cohen and O.J. Boxma,Boundary Value Problems in Queueing System Analysis (North-Holland Publ. Co., Amsterdam, 1983); Russian edition (Mir, Moscow, 1987).
H. Cramer, On some questions connected with mathematical risk, Univ. of California, Publ. in Statist. 2 (1954) 99.
M. Eisenberg, Two queues with alternating service, SIAM Journ. Appl. Math. 36 (1979) 287–303.
G. Fayolle, On functional equations of one and two variables arising in the analysis of stochastic models, In:Math. Comp. Perform/Reliability, ed. G. Iazeolla, P.J. Courtois and A. Hordijk (North-Holland Publ. Co. Amsterdam, 1984) p. 55–75.
G. Fayolle, A simple telephone exchange with delayed feedback, In:Teletraffic Analysis and Comp. Perf. Evaluation, ed. O.J. Boxma, J.W. Cohen and H.C. Tijms (North-Holland Publ. Co., Amsterdam, 1986) p. 245–254.
G. Fayolle and R. Iasnogorodski, Two coupled processors: the reduction to a Riemann-Hilbert problem, Z. Wahrsch. Verw. Gebiete 47 (1979) 325–351.
G. Fayolle, R. Iasnogorodski and I. Mitrani, The distribution of sojourn times in a queueing network with overtaking: reduction to a boundary value problem, inPerformance '83, ed. A.K. Agrawala and S.K. Tripathi (North-Holland Publ. Co., Amsterdam, 1983) p. 477–486.
G. Fayolle, P.J.B. King and I. Mitrani, The solution of certain two-dimensional Markov models, Adv. Appl. Prob. 14 (1982) 295–308.
L. Flatto and S. Hahn, Two parallel queues created by arrivals with two demands, I&II, SIAM J. Appl. Math. 44 (1984) 1041–1054; 45 (1985) 861–878; erratum 45 (1985) 168.
G.J. Foschini, Equilibrium for diffusion models of pairs of communicating computers-symmetric case, IEEE Transactions, IT 28 (1982) 273–284.
F.D. Gakhov,Boundary Value Problems (Pergamon Press, Oxford, 1966).
S.J. de Klein, Fredholm integral equation in queueing systems analysis, doctoral thesis, Math. Inst., Univ. of Utrecht, 1988.
V.A. Malysev, Classification of two-dimensional positive random walks and almost linear semi-martingales, Dokl. Akad. Nauk. SSSR 202 (1972) 136–139.
E. Meister,Randwertaufgaben der Funktionentheorie (Teubner, Stuttgart, 1983).
I. Mitrani, Response time problems in communication networks, J.R. Statist. Soc. B 47 (1985) 396–406.
N.I. Mushkelishvili,Singular Integral Equations (Noordhoff, Groningen, 1953).
Ph. Nain, On a generalisation of the preemptive resume priority, Adv. Appl. Prob. 18 (1986) 255–273.
Ph. Nain, Applications des Méthodes Analytiques à la Modelisation des Systèmes Informatiques, Doctoral Thesis, Univ. Pierre et Marie Curie-Paris 6, Paris, 1987.
Ph. Nain and K. Ross, Optimal priority assignment with hard constraint, Report INRIA, Centre de Sophia Antipolis, 1985.
Ph. Nain, Analysis of a two-node ALOHA-network with infinite capacity buffers, in:Computer Networking and Performance Evaluation, ed. T. Hasegawa, H. Takagi, Y. Takahashi (North-Holland, Amsterdam, 1986) p. 49–64.
Z. Nehari,Conformal Mapping (Dover Publ., New York, 1975).
H. Nauta, A queueing model-transport of items to one saerver, preprint 388, Math. Inst. Univ. of Utrecht, 1985.
F. Pollaczek,Théorie Analytique des Problèmes Stochastiques Relatifs à un Groupe de Ligues Téléphoniques avec Dispositif d'Attente (Gauthier Villars, Paris, 1961).
J.H.A. de Smit, The single server semi-Markov queue, Stoch. Proc. Appl. 22 (1986) 37–50.
H. Takagi, Analysis of Polling Systems (MIT Press Cambridge, Massachusetts, 1986).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Cohen, J.W. Boundary value problems in queueing theory. Queueing Syst 3, 97–128 (1988). https://doi.org/10.1007/BF01189045
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01189045