Boundary value problems in queueing theory | Queueing Systems Skip to main content
Log in

Boundary value problems in queueing theory

  • Invited Paper
  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

Recently complex function techniques have been developed for the analysis of queueing systems which need for their modelling a two dimensional state space. A variety of computer- and communication networks gives rise to such two-dimensional queueing systems and their analysis is needed for the performance evaluation of these aggregates. The present study reviews these developments

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P.C. Blanc, Asymptotic analysis of a queueing system with a two-dimensional state space, J. Appl. Prob. 21 (1984) 870–886.

    Google Scholar 

  2. J.P.C. Blanc, The relaxation time of two queueing systems in series, Stoch. Models 1 (1985) 1–16.

    Google Scholar 

  3. J.P.C. Blanc, A numerical study of a coupled processor model, report 87-01, Dept. Math. Univ. Limburg, Neth. 1987.

    Google Scholar 

  4. J.P.C. Blanc and E.A. Van Doorn, Relaxation times for queueing systems, in:Proc. C.W.I. Symposium Mathematics and Computer Science, ed. J.W. Bakker, M. Hazewinkel and J.K. Lenstra, C.W.I. Monograph (North-Holland Publ. Co., Amsterdam, 1984) p. 139–162.

    Google Scholar 

  5. J.P.C. Blanc, Iasnogoradski and Ph. Nain, Analysis of the M/G/1-/M/1 queueing model, Report INRIA, Center de Sophia Antipolis, 1986.

  6. O.J. Boxma, Two symmetric queues with alternating service and switching times, In:Performance '84, ed. E. Gelenbe (North-Holland Publ. Co., Amsterdam, 1984) p. 409–431.

    Google Scholar 

  7. O.J. Boxma, Models of two queues: a few new views, In:Teletraffic Analysis and Comp. Perf. Evaluation, ed. O.J. Boxma, J.W. Cohen and H.C. Tijms (North-Holland Publ. Co., Amsterdam, 1986) p. 75–98.

    Google Scholar 

  8. M.A. Brun and G. Fayolle, The distribution of the resequencing time in a simple fork-join system, In:Appl. Math., Perf., Reliab. Models Comp. Comm. Syst., ed. G. Iazeolla, F.J. Courtois and O.J. Boxma (North-Holland Publ. Co. Amsterdam, 1987) p. 203–212.

    Google Scholar 

  9. E.G. Coffman, G. Fayolle and I. Mitrani, Analysis of sojourn times in a tandem queue with overtaking; reduction to a boundary value problem, Stochastic Models 2 (1986) 43–65.

    Google Scholar 

  10. E.G. Coffman, G. Fayolle and I. Mitrani, Two queues with alternating service periods, Report A.T. & T Bell Labs. Murray Hill, 1987, to appear in:Proc. Performance '87, ed. P.J. Courtois and G. Latouche.

    Google Scholar 

  11. J.W. Cohen,The Single Server Queue (North-Holland Publ. Co., Amsterdam, 1982) revised edition.

    Google Scholar 

  12. J.W. Cohen, The Wiener-Hopf technique in applied probability, In:Perspectives in Probability and Statistics, ed. J. Gani (Academic Press, London, 1975) p. 145–156.

    Google Scholar 

  13. J.W. Cohen, A two-queue, one-server model with priority for the longer queue, Queueing Systems Theor. Appl. 2 (1987) 261–284.

    Google Scholar 

  14. J.W. Cohen, A queueing system with semi-exhaustive alternating service, To appear in:Performance '87, ed. P.J. Courtois and G. Latouche.

  15. J.W. Cohen, On a functional relation in three complex variables, preprint 359, Math. Inst., Univ. Utrecht, 1984.

  16. J.W. Cohen, On the analysis of parallel independent processors, preprint 374, Math. Inst., Univ. Utrecht, 1985.

  17. J.W. Cohen, On entrance time distributions for two-dimensional random walks, in:Proc. Appl. Math. & Perf. Reliability Models of Compl. Commun. Syst., ed. G. Iazeolla, P.J. Courtois and O.J. Boxma (North-Holland Publ. Co., Amsterdam, 1987) p. 25–42.

    Google Scholar 

  18. J.W. Cohen, On entrance times of a homogeneousN-dimensional random walk: an identity, to appear in:A Celebration of Probability, 1988, ed. J. Gani.

  19. J.W. Cohen and O.J. Boxma,Boundary Value Problems in Queueing System Analysis (North-Holland Publ. Co., Amsterdam, 1983); Russian edition (Mir, Moscow, 1987).

    Google Scholar 

  20. H. Cramer, On some questions connected with mathematical risk, Univ. of California, Publ. in Statist. 2 (1954) 99.

    Google Scholar 

  21. M. Eisenberg, Two queues with alternating service, SIAM Journ. Appl. Math. 36 (1979) 287–303.

    Google Scholar 

  22. G. Fayolle, On functional equations of one and two variables arising in the analysis of stochastic models, In:Math. Comp. Perform/Reliability, ed. G. Iazeolla, P.J. Courtois and A. Hordijk (North-Holland Publ. Co. Amsterdam, 1984) p. 55–75.

    Google Scholar 

  23. G. Fayolle, A simple telephone exchange with delayed feedback, In:Teletraffic Analysis and Comp. Perf. Evaluation, ed. O.J. Boxma, J.W. Cohen and H.C. Tijms (North-Holland Publ. Co., Amsterdam, 1986) p. 245–254.

    Google Scholar 

  24. G. Fayolle and R. Iasnogorodski, Two coupled processors: the reduction to a Riemann-Hilbert problem, Z. Wahrsch. Verw. Gebiete 47 (1979) 325–351.

    Google Scholar 

  25. G. Fayolle, R. Iasnogorodski and I. Mitrani, The distribution of sojourn times in a queueing network with overtaking: reduction to a boundary value problem, inPerformance '83, ed. A.K. Agrawala and S.K. Tripathi (North-Holland Publ. Co., Amsterdam, 1983) p. 477–486.

    Google Scholar 

  26. G. Fayolle, P.J.B. King and I. Mitrani, The solution of certain two-dimensional Markov models, Adv. Appl. Prob. 14 (1982) 295–308.

    Google Scholar 

  27. L. Flatto and S. Hahn, Two parallel queues created by arrivals with two demands, I&II, SIAM J. Appl. Math. 44 (1984) 1041–1054; 45 (1985) 861–878; erratum 45 (1985) 168.

    Google Scholar 

  28. G.J. Foschini, Equilibrium for diffusion models of pairs of communicating computers-symmetric case, IEEE Transactions, IT 28 (1982) 273–284.

    Google Scholar 

  29. F.D. Gakhov,Boundary Value Problems (Pergamon Press, Oxford, 1966).

    Google Scholar 

  30. S.J. de Klein, Fredholm integral equation in queueing systems analysis, doctoral thesis, Math. Inst., Univ. of Utrecht, 1988.

  31. V.A. Malysev, Classification of two-dimensional positive random walks and almost linear semi-martingales, Dokl. Akad. Nauk. SSSR 202 (1972) 136–139.

    Google Scholar 

  32. E. Meister,Randwertaufgaben der Funktionentheorie (Teubner, Stuttgart, 1983).

    Google Scholar 

  33. I. Mitrani, Response time problems in communication networks, J.R. Statist. Soc. B 47 (1985) 396–406.

    Google Scholar 

  34. N.I. Mushkelishvili,Singular Integral Equations (Noordhoff, Groningen, 1953).

    Google Scholar 

  35. Ph. Nain, On a generalisation of the preemptive resume priority, Adv. Appl. Prob. 18 (1986) 255–273.

    Google Scholar 

  36. Ph. Nain, Applications des Méthodes Analytiques à la Modelisation des Systèmes Informatiques, Doctoral Thesis, Univ. Pierre et Marie Curie-Paris 6, Paris, 1987.

    Google Scholar 

  37. Ph. Nain and K. Ross, Optimal priority assignment with hard constraint, Report INRIA, Centre de Sophia Antipolis, 1985.

  38. Ph. Nain, Analysis of a two-node ALOHA-network with infinite capacity buffers, in:Computer Networking and Performance Evaluation, ed. T. Hasegawa, H. Takagi, Y. Takahashi (North-Holland, Amsterdam, 1986) p. 49–64.

    Google Scholar 

  39. Z. Nehari,Conformal Mapping (Dover Publ., New York, 1975).

    Google Scholar 

  40. H. Nauta, A queueing model-transport of items to one saerver, preprint 388, Math. Inst. Univ. of Utrecht, 1985.

  41. F. Pollaczek,Théorie Analytique des Problèmes Stochastiques Relatifs à un Groupe de Ligues Téléphoniques avec Dispositif d'Attente (Gauthier Villars, Paris, 1961).

    Google Scholar 

  42. J.H.A. de Smit, The single server semi-Markov queue, Stoch. Proc. Appl. 22 (1986) 37–50.

    Google Scholar 

  43. H. Takagi, Analysis of Polling Systems (MIT Press Cambridge, Massachusetts, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, J.W. Boundary value problems in queueing theory. Queueing Syst 3, 97–128 (1988). https://doi.org/10.1007/BF01189045

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01189045

Keywords

Navigation