Determination of a class of primitive permutation groups | Mathematische Zeitschrift Skip to main content
Log in

Determination of a class of primitive permutation groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

References

  1. Burnside, W.: Theory of groups of finite order. New York: Dover 1955.

    Google Scholar 

  2. Dickson, L.E.: Linear groups with an exposition of the galois field theory. New York: Dover 1958.

    Google Scholar 

  3. Dieudonné, J.: La Géométrie des Groupes Classiques. Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  4. Feit, W., andJ. G. Thompson: Finite groups which contain a self-centralizing subgroup of order 3. Nagoya Math. J.21, 185–197 (1962).

    Google Scholar 

  5. ——: Solvability of groups of odd order. Pacific J. Math.13, 775–1029 (1963).

    Google Scholar 

  6. Hall, M., andJ.K. Senior: The groups of order 2n(n≦6). New York: Macmillan 1964.

    Google Scholar 

  7. Higman, D.G.: Focal series in finite groups. Canad. J. Math.5, 477–497 (1953).

    Google Scholar 

  8. Miller, G.A.: Determination of all the groups of orderp m which contain the Abelian group of type (m-2,1),p being any prime. Trans. Amer. Math. Soc.2, 259–272 (1901).

    Google Scholar 

  9. —: On the groups of orderp m which contain operators of orderp m-2. Trans. Amer. Math. Soc.3, 383–387 (1902).

    Google Scholar 

  10. —: The groups of isomorphisms of the simple groups whose degrees are less than fifteen. Arch. Math. u. Phys.12, 249–251 (1907).

    Google Scholar 

  11. Sims, C.C.: Graphs and finite permutation groups. Math. Z.95, 76–86 (1967).

    Google Scholar 

  12. Suzuki, M.: A characterization of simple groupsLF(2,p). J. Fac. Sci. Univ. Tokyo (Sect. I)6, 259–293 (1951).

    Google Scholar 

  13. Wielandt, H.: Finite permutation groups. New York: Academic Press 1964.

    Google Scholar 

  14. Wong, W.J.: A characterisation of finite projective groups. J. London Math. Soc.38, 27–39 (1963).

    Google Scholar 

  15. Wong, W.J.: Finite groups with a self-centralizing subgroup of order 4. J. Austral. Math. Soc. (to appear).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partially supported by National Science Foundation grant GP-3986 at the University of Notre Dame.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, W.J. Determination of a class of primitive permutation groups. Math Z 99, 235–246 (1967). https://doi.org/10.1007/BF01112454

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01112454

Keywords

Navigation