References
Burnside, W.: Theory of groups of finite order. New York: Dover 1955.
Dickson, L.E.: Linear groups with an exposition of the galois field theory. New York: Dover 1958.
Dieudonné, J.: La Géométrie des Groupes Classiques. Berlin-Göttingen-Heidelberg: Springer 1955.
Feit, W., andJ. G. Thompson: Finite groups which contain a self-centralizing subgroup of order 3. Nagoya Math. J.21, 185–197 (1962).
——: Solvability of groups of odd order. Pacific J. Math.13, 775–1029 (1963).
Hall, M., andJ.K. Senior: The groups of order 2n(n≦6). New York: Macmillan 1964.
Higman, D.G.: Focal series in finite groups. Canad. J. Math.5, 477–497 (1953).
Miller, G.A.: Determination of all the groups of orderp m which contain the Abelian group of type (m-2,1),p being any prime. Trans. Amer. Math. Soc.2, 259–272 (1901).
—: On the groups of orderp m which contain operators of orderp m-2. Trans. Amer. Math. Soc.3, 383–387 (1902).
—: The groups of isomorphisms of the simple groups whose degrees are less than fifteen. Arch. Math. u. Phys.12, 249–251 (1907).
Sims, C.C.: Graphs and finite permutation groups. Math. Z.95, 76–86 (1967).
Suzuki, M.: A characterization of simple groupsLF(2,p). J. Fac. Sci. Univ. Tokyo (Sect. I)6, 259–293 (1951).
Wielandt, H.: Finite permutation groups. New York: Academic Press 1964.
Wong, W.J.: A characterisation of finite projective groups. J. London Math. Soc.38, 27–39 (1963).
Wong, W.J.: Finite groups with a self-centralizing subgroup of order 4. J. Austral. Math. Soc. (to appear).
Author information
Authors and Affiliations
Additional information
Research partially supported by National Science Foundation grant GP-3986 at the University of Notre Dame.
Rights and permissions
About this article
Cite this article
Wong, W.J. Determination of a class of primitive permutation groups. Math Z 99, 235–246 (1967). https://doi.org/10.1007/BF01112454
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01112454