An expert PID controller uses refined ziegler and nichols rules and fuzzy logic ideas | Applied Intelligence Skip to main content
Log in

An expert PID controller uses refined ziegler and nichols rules and fuzzy logic ideas

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This article proposes a scheme for the on-line adjustment of three mode controller settings based on experimental measurements of closed-loop performance. It uses a recently developed heuristic tuning procedure to identify estimated process parameters. This method may give rise to conflicting estimates. Fuzzy Set theory is applied to manage the situation in terms of a fuzzy conjunction to combine the various estimates. PID control was chosen because of its wide use in the industrial environment due to driving simplicity and robustness. The article shows design, development, and computer simulation aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. J.G. Ziegler and N.B. Nichols, “Optimum settings for automatic controllers,”Trans. ASME vol. 65, pp. 433–444, 1942.

    Google Scholar 

  2. F.G. Shinskey,Process-Control Systems McGraw-Hill: New York, p. 37, 1975.

    Google Scholar 

  3. K.J. Ästrom and T. Hagglund, “Automatic tuning of simple regulators with specifications on phase and amplitude margins,”Automatica vol. 20, no. 5, pp. 645–651, 1984.

    Google Scholar 

  4. C.C. Hang, T.H. Lee, and T.T. Tay, “The use of recursive parameter estimation as an auto-tuning aid,” inProc. ISA Annu. Conf., USA, 1984, pp. 387–396.

  5. C.C. Hang, K.K. Sin, “On-line auto-tuning of PID controllers based on cross correlation,”Proc. Int. Conf. Ind. Electron., Singapore, 1988, pp. 441–446.

  6. K.J. Ästrom, J.J. Anton, and K.E. Arzen, “Expert control,”Automatica vol. 22, pp. 277–286, 1986.

    Google Scholar 

  7. G.G. Acosta, M.A. Mayosky, and J.M. Catalfo, “Sistema de Producción aplicado a la sintonía de un Controlador PID,” inProc. XIII Jornadas de Ingeniería Eléctrica y Electrónica, Quito, Ecuador, July 1992, pp. 657–664.

  8. E.H. Bristol, “Pattern recognition: an alternative to parameter identification in adaptive control,”Automatica vol. 13, no. 2, pp. 197–202, 1977.

    Google Scholar 

  9. T.W. Krauss and T.J. Myron, ‘Self-tuning PID controller uses pattern recognition approach,”Control Eng. vol. 36, no. 6, pp. 106–111, June 1984.

    Google Scholar 

  10. R.J. Mantz and E.J. Tacconi, “Complimentary rules to Ziegler and Nichols' rules for a regulating and tracking controller,”Int. J. Control vol. 49, no. 5, pp. 1465–1471, 1989.

    Google Scholar 

  11. R.J. Mantz and E.J. Tacconi, “A regulating and tracking PID controller,”Ind. Eng. Chem. Res. vol. 29, pp. 1249–1253, 1990.

    Google Scholar 

  12. C.C. Hang, K.J. Ästrom, W.K. Ho, “Refinements of the Ziegler and Nichols tuning formula,”IEE Proc. D vol. 138, no. 2, pp. 111–118, March 1991.

    Google Scholar 

  13. P.J. King and E.H. Mamdani, “The application of fuzzy control systems to industrial processes,”Automatica vol. 13, pp. 235–242, 1977.

    Google Scholar 

  14. F. van der Rhee, H.R. van Nauta Lemke, and J.G. Dijkman, “Knowledge based fuzzy control of systems,”IEEE Trans. Automat. Control vol. 35, no. 2, pp. 148–155, February 1990.

    Google Scholar 

  15. S. Tzafestas and N.P. Papanikolopoulos, “Incremental fuzzy expert PID control,”IEEE Trans. Ind. Electron. vol. 37, no. 5, pp. 365–371, October 1990.

    Google Scholar 

  16. L.A. Zadeh, “Fuzzy sets,”Inform. Control vol. 8, pp. 338–353, 1965.

    Google Scholar 

  17. L.A. Zadeh, “Fuzzy logic,”IEEE Computer, pp. 83–93, April 1988.

  18. A. Kaufmann and M.M. Gupta,Introduction to Fuzzy Arithmetic: Theory and Applications Van Nostrand Reinhold: New York, 1985.

    Google Scholar 

  19. E. Rich,Artificial Intelligence McGraw-Hill: New York, pp. 84–87, 1983 (series in Artificial Intelligence).

    Google Scholar 

  20. Dote Yashuiko, “Fuzzy and neural network controller,” inProc. XVI Annu. Conf. IEEE Ind. Electron. Soc. (IECON '90), Asilomar, USA, November 1990, pp. 1314–1324.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acosta, G.G., Mayosky, M.A. & Catalfo, J.M. An expert PID controller uses refined ziegler and nichols rules and fuzzy logic ideas. Appl Intell 4, 53–66 (1994). https://doi.org/10.1007/BF00872055

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00872055

Key words

Navigation