Quasi-coproducts and accessible categories with wide pullbacks | Applied Categorical Structures
Skip to main content

Quasi-coproducts and accessible categories with wide pullbacks

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We establish a 2-categorical duality involving the 2-category A κ of all κ-accessible categories with wide pullbacks, also known as locally κ-polypresentable categories, and of functors preserving κ-filtered colimits and wide pullbacks. Commutation of wide pullbacks with so-called quasi-coproducts in Set is the basic ingredient to this duality, which leads to a full characterization of categories of type Wdpb Filtκ (A, Set)=A κ

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J. and Rosický, J.: Accessible Categories and Locally Presentable Categories, Cambridge University Press, 1994.

  2. Adámek, J. and Volger, H.: On locally reflective categories of structures, Preprint, Universität Passau, 1992.

  3. Ageron, P.: The logic of structures, J. Pure appl. Algebra 79 (1992), 15–34.

    Google Scholar 

  4. Artin, M., Grothendieck, A., and Verdier, J.L., Théorie des Topos et Cohomologie Etale des 021 Schémas, Lecture Notes in Math. 269 and 270, Springer, Berlin, 1972.

    Google Scholar 

  5. Barr, M.: Representations of categories, J. Pure Appl. Algebra 41 (1986), 113–137.

    Google Scholar 

  6. Börger, R. and Tholen, W.: Abschwächungen des Adjunktionsbegriffs, Manuscripta Math. 19 (1976), 19–45.

    Google Scholar 

  7. Börger, R. and Tholen, W.: Strong, regular and dense generators, Cahiers Top. Géom. Diff. Cat. 32 (1990), 257–276.

    Google Scholar 

  8. Carboni, A. and Johnstone, P. T.: Connected limits, familial representability and Artin glueing, Preprint, Cambridge University, 1993.

  9. Coste, M.: Localisations dans les catégories de modéles, Thèse, Université Paris Nord, 1977.

  10. Diers, Y.: Familles universelles de morphismes, Ann. Soc. Bruxelles 93 (1979), 175–195.

    Google Scholar 

  11. Diers, Y.: Catégories localement multiprésentables, Arch. Math. 34 (1980), 344–356.

    Google Scholar 

  12. Girard, J. Y.: The system F of variable types fifteen years later, Theoret. Comput. Sci. 45 (1986), 159–192.

    Google Scholar 

  13. Guitart, R. and Lair, C.: Existence de diagrammes localement libres, I, Diagram 6 (1981), GL1-GL13.

    Google Scholar 

  14. Gabriel, P. and Ulmer, F.: Lokal präsentierbare Kategorien, Lecture Notes in Math. 221, 021 Springer, Berlin, 1971.

    Google Scholar 

  15. Hébert, M.: Syntactic characterization of closure underconnected limits, Arch. Math. Logic 31 (1991), 133–143.

    Google Scholar 

  16. Hébert, M.: Syntactic characterizations of closure under pullbacks and of locally polypresentable categories, Preprint, Université Laval, 1993.

  17. Hu, H.: Duality for accessible categories, in Can. Math. Soc. Conference Proceedings, Vol. 13, A.M.S., Providence, 1992, pp. 211–242.

    Google Scholar 

  18. Hu, H. and Tholen, W.: Limits in free coproduct completions, J. Pure Appl. Algebra, to appear.

  19. Johnstone, P. T.: A syntactic approach to Diers' localizable categories, in Applications of Sheaves, Lecture Notes in Math. 753, Springer, Berlin, 1979, pp. 466–478.

    Google Scholar 

  20. Kaput, J. J.: Locally adjunctable functors, Ill. J. Math. 16 (1972), 86–94.

    Google Scholar 

  21. Kelly, G. M.: Basic Concepts of Enriched Category Theory, Cambridge University Press, 1982.

  22. Lair, C.: Catégories modelables et catégories esquissables, Diagrammes 7 (1981), L1-L20.

    Google Scholar 

  23. Lamarche, F.: Modelling polymorphism with categories, PhD thesis, McGill University, 1988.

  24. Mac Lane, S.: Categories for the Working Mathematician, Springer, Berlin, 1971.

    Google Scholar 

  25. Makkai, M.: Strong conceptual completeness for first order logic, Ann. Pure Appl. Logic 40 (1988), 167–215.

    Google Scholar 

  26. Makkai, M.: A theorem on Barr-exact categories, with an infinitary generalization, Ann. Pure Appl. Logic 47 (1990), 225–268.

    Google Scholar 

  27. Makkai, M. and Paré, R.: Accessible categories: the foundations of categorical model theory, Contemporary Math. 104, A.M.S., Providence, 1990.

    Google Scholar 

  28. Makkai, M. and Pitts, A.: Some results on locally finitely presentable categories, Trans. Amer. Math. Soc. 229 (1987), 473–496.

    Google Scholar 

  29. Paré, R.: Simply connected limits, Can J. Math. 42 (1990), 731–746.

    Google Scholar 

  30. Taylor, P.: The trace factorization of stable functors, Preprint, Imperial College, 1990.

  31. Taylor, P.: Locally finitely poly-presentable categories, Preprint, Imperial College, 1990.

  32. Tholen, W.: MacNeille completion of concrete categories with local properties, Comment. Math. Univ. St. Pauli 28 (1979), 179–202.

    Google Scholar 

  33. Volger, H.: Preservation theorems for limits of structures and global sections of sheaves of structures, Math. Z. 166 (1979), 27–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The first author acknowledges financial assistance from a special research grant of the Faculty of Arts at York University. The second author is partially supported by an NSERC operating grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Tholen, W. Quasi-coproducts and accessible categories with wide pullbacks. Appl Categor Struct 4, 387–402 (1996). https://doi.org/10.1007/BF00122686

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122686

Mathematics Subject Classifications (1991)

Key words