A Novel Framework for Adaptive Quadruped Robot Locomotion Learning in Uncertain Environments | SpringerLink
Skip to main content

A Novel Framework for Adaptive Quadruped Robot Locomotion Learning in Uncertain Environments

  • Conference paper
  • First Online:
Green, Pervasive, and Cloud Computing (GPC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14504))

Included in the following conference series:

  • 260 Accesses

Abstract

Learning diverse and flexible locomotion strategies in uncertain environments has been a longstanding challenge for quadruped robots. Although recent progress in domain randomization has partially tackled this difficulty by training policies on a wide range of potential factors, there is still a great need for improving efficiency. In this paper, we propose a novel framework for adaptive quadruped robot locomotion learning in uncertain environments. Our method is based on data-efficient reinforcement learning and learns simulation parameters iteratively. We also propose a novel Sampling-Interval-Adaptive Identification (SIAI) strategy that uses historical parameters to optimize sampling distribution and then improve identification accuracy. Final evaluations based on multiple robotic locomotion tasks showed superiority of our method over baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7549
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Raibert, M.H., Tello, E.R.: Legged robots that balance. IEEE Expert (1986)

    Google Scholar 

  2. Katz, B., Carlo, J.D., Kim, S.: Mini cheetah: a platform for pushing the limits of dynamic quadruped control. In: 2019 International Conference on Robotics and Automation (ICRA) (2019)

    Google Scholar 

  3. Carlo, J.D., Wensing, P.M., Katz, B., Bledt, G., Kim, S.: Dynamic locomotion in the MIT cheetah 3 through convex model-predictive control. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018)

    Google Scholar 

  4. Ding, Y., Pandala, A., Li, C., Shin, Y.H., Park, H.W.: Representation-free model predictive control for dynamic motions in quadrupeds. IEEE Trans. Robot. (2020)

    Google Scholar 

  5. Matas, J., James, S., Davison, A.J.: Sim-to-real reinforcement learning for deformable object manipulation. In: Conference on Robot Learning (2018)

    Google Scholar 

  6. Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., Hutter, M.: Learning quadrupedal locomotion over challenging terrain. Sci. Robot. (2020)

    Google Scholar 

  7. Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., Hutter, M.: Learning robust perceptive locomotion for quadrupedal robots in the wild. Sci. Robot. (2022)

    Google Scholar 

  8. Yang, Y., Caluwaerts, K., Iscen, A., Zhang, T., Tan, J., Sindhwani, V.: Data efficient reinforcement learning for legged robots. In: Conference on Robot Learning (2020)

    Google Scholar 

  9. Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., Levine, S.: Learning to walk via deep reinforcement learning. Robot. Sci. Syst. (2019)

    Google Scholar 

  10. Tan, J., Zhang, T., Coumans, E., et al.: Sim-to-real: Learning agile locomotion for quadruped robots. Robot. Sci. Syst. (2018)

    Google Scholar 

  11. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Advances in Artificial Life: Third European Conference on Artificial Life Granada, Spain, 4–6 June 1995, Proceedings, vol. 3 (1995)

    Google Scholar 

  12. Koos, S., Mouret, J.-B., Doncieux, S.: Crossing the reality gap in evolutionary robotics by promoting transferable controllers. in: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (2010)

    Google Scholar 

  13. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transferring deep neural networks from simulation to the real world. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2017)

    Google Scholar 

  14. Peng, X.B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Sim-to-real transfer of robotic control with dynamics randomization. In: 2018 IEEE International Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

  15. Farchy, A., Barrett, S., MacAlpine, P., Stone, P.: Humanoid robots learning to walk faster: from the real world to simulation and back. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems (2013)

    Google Scholar 

  16. Tan, J., Xie, Z., Boots, B., Liu, C.K.: Simulation-based design of dynamic controllers for humanoid balancing. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2016)

    Google Scholar 

  17. Du, Y., Watkins, O., Darrell, T., Abbeel, P., Pathak, D.: Auto-tuned sim-to-real transfer. In: 2021 IEEE International Conference on Robotics and Automation (ICRA) (2021)

    Google Scholar 

  18. Chebotar, Y., Handa, A., Makoviychuk, V., et al.: Closing the sim-to-real loop: adapting simulation randomization with real-world experience. In: 2019 International Conference on Robotics and Automation (ICRA) (2019)

    Google Scholar 

  19. Mastalli, C., Havoutis, I., Focchi, M., Caldwell, D.G., Semini, C.: Motion planning for quadrupedal locomotion: coupled planning, terrain mapping, and whole-body control. IEEE Trans. Robot. (2020)

    Google Scholar 

  20. Rudin, N., Hoeller, D., Reist, P., Hutter, M.: Learning to walk in minutes using massively parallel deep reinforcement learning. In: Conference on Robot Learning (2022)

    Google Scholar 

  21. Sorokin, M., Tan, J., Liu, C.K., Ha, S.: Learning to navigate sidewalks in outdoor environments. IEEE Robot. Autom. Lett. (2022)

    Google Scholar 

  22. Agarwal, A., Kumar, A., Malik, J., Pathak, D.: Legged locomotion in challenging terrains using egocentric vision. In: 6th Annual Conference on Robot Learning (2022)

    Google Scholar 

  23. Tsounis, V., Alge, M., Lee, J., Farshidian, F., Hutter, M.: Deepgait: planning and control of quadrupedal gaits using deep reinforcement learning. IEEE Robot. Autom. Lett. (2020)

    Google Scholar 

  24. Smith, L., Kew, J.C., Peng, X.B., Ha, S., Tan, J., Levine, S.: Legged robots that keep on learning: fine-tuning locomotion policies in the real world. In: 2022 International Conference on Robotics and Automation (ICRA) (2022)

    Google Scholar 

  25. Peng, X.B., Coumans, E., Zhang, T., Lee, T.-W., Tan, J., Levine, S.: Learning agile robotic locomotion skills by imitating animals. arXiv preprint arXiv:2004.00784 (2020)

  26. Nagabandi, A., Clavera, I., Liu, S., et al.: Learning to adapt in dynamic, real-world environments through meta-reinforcement learning. In: International Conference on Learning Representations (2018)

    Google Scholar 

  27. Yu, W., Tan, J., Liu, C.K., Turk, G.: Preparing for the unknown: learning a universal policy with online system identification. Robot. Sci. Syst. (2017)

    Google Scholar 

  28. Zhu, S., Kimmel, A., Bekris, K., Boularias, A.: Fast model identification via physics engines for data-efficient policy search. In: International Joint Conference on Artificial Intelligence (IJCAI) (2018)

    Google Scholar 

  29. Hansen, N.: The CMA evolution strategy: a tutorial. arXiv preprint arXiv:1604.00772 (2016)

  30. Jiang, Y., Zhang, T., Ho, D., et al.: SimGAN: hybrid simulator identification for domain adaptation via adversarial reinforcement learning. In: 2021 IEEE International Conference on Robotics and Automation (ICRA) (2021)

    Google Scholar 

  31. Allevato, A., Short, E.S., Pryor, M., Thomaz, A.: Tunenet: one-shot residual tuning for system identification and sim-to-real robot task transfer. In: Conference on Robot Learning (2020)

    Google Scholar 

  32. Iscen, A., Caluwaerts, K., Tan, J., et al.: Policies modulating trajectory generators. In: Conference on Robot Learning (2018)

    Google Scholar 

  33. Coumans, E., Bai, Y.: Pybullet, a Python module for physics simulation for games, robotics and machine learning (2016). http://pybullet.org

  34. Wang, X.: Unitree robotics. https://www.unitree.com/

  35. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

Download references

Acknowledgements

This work was partially supported by the National Science Fund for Distinguished Young Scholars (62025205), National Natural Science Foundation of China (62032020, 62102317), and the Huawei-NPU Collaboration Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M. et al. (2024). A Novel Framework for Adaptive Quadruped Robot Locomotion Learning in Uncertain Environments. In: Jin, H., Yu, Z., Yu, C., Zhou, X., Lu, Z., Song, X. (eds) Green, Pervasive, and Cloud Computing. GPC 2023. Lecture Notes in Computer Science, vol 14504. Springer, Singapore. https://doi.org/10.1007/978-981-99-9896-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9896-8_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9895-1

  • Online ISBN: 978-981-99-9896-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics