Multi-source Autoregressive Entity Linking Based on Generative Method | SpringerLink
Skip to main content

Multi-source Autoregressive Entity Linking Based on Generative Method

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2012))

  • 455 Accesses

Abstract

The task of entity linking aims to map the entity reference in the text with the unambiguous entity in the knowledge base. However, under the background of the continuous growth of science and technology service platform services, the complexity and diversity of domain semantic information, and the vagueness and ambiguity of natural language, the task of linking industrial chain knowledge graphs and technology service resources faces the following problems: (1) The increase in the types of semantic information in the do-main will lead to the lack of cognition and ambiguity in the entity linking process, which will affect the accuracy of entity linking; (2) the context and interaction of corpus information Dependencies become more complex, making insufficient consideration of the mapping relationship between linked entities. To address the above issues, this paper proposes a generative method and multiple sources of information Autoregressive Entity Linking (GMoAEL), which uses data sets such as unstructured textual descriptions, related reference links, and fine-grained structured types Information and other sources of information are used to build a unified dense representation for entity learning, and an autoregressive model in the form of encoder-decoder is used to adjust the link generation process to handle the complex mapping relationship between in-put and output. This paper uses the AIDA CoNLL-YAGO data set to conduct experiments. Compared with other methods, the Micro-F1 value is 1.6% points ahead, which verifies the feasibility and effectiveness of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, J., Sun, A., Ma, Y.: Neural named entity boundary detection. IEEE Trans. Knowl. Data Eng. 33(4), 1790–1795 (2020). https://doi.org/10.1109/TKDE.2020.2981329

    Article  Google Scholar 

  2. Li, T.R., Liu, M.T., Zhang, Y.J., et al.: A Review of Entity Linking Research Based on Deep Learning. Acta Scientiarum Naturalium Universitatis Pekinensis 57(01), 91–98 (2021). https://doi.org/10.13209/j.0479-8023.2020.077

    Article  Google Scholar 

  3. Zhang, T., Jia, Z., Li, T.R., et al.: Open-domain question-answering system based on large-scale knowledge base. CAAI Trans. Intell. Syst. 13(04), 557–563 (2018). https://doi.org/10.11992/tis.201707039

  4. Zhu, M., Celikkaya, B., Bhatia, P., et al.: Latte: latent type modeling for biomedical entity linking. In: Proceedings of the AAAI Conference on Artificial Intelligence. 34(05), 9757–9764 (2020). https://doi.org/10.1609/aaai.v34i05.6526

  5. Ji, S., Pan, S., Cambria, E., et al.: A survey on knowledge graphs: representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 33(2), 494–514 (2021). https://doi.org/10.1109/TNNLS.2021.3070843

    Article  MathSciNet  Google Scholar 

  6. Kusum, L., Pardeep, S., Kamlesh, D.: Mention detection in coreference resolution: survey. Appl. Intell.. Intell. 52(9), 9816–9860 (2022). https://doi.org/10.1007/s10489-021-02878-2

  7. Mulang’, I O, Singh, K., Prabhu, C., et al.: Evaluating the impact of knowledge graph context on entity disambiguation models. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 2157–2160 (2020). https://doi.org/10.1145/3340531.3412159

  8. Daiber, J., Jakob, M., Hokamp, C., et al.: Improving efficiency and accuracy in multilingual entity extraction. In: Proceedings of the 9th International Conference on Semantic Systems, pp.121–124 (2013). https://doi.org/10.1145/2506182.2506198

  9. Özge, S., Artem, S., Mikhail, A., Alexander, P., Chris, B.: Neural entity linking: a survey of models based on deep learning. Semantic Web 13(3), 527–570 (2022). https://doi.org/10.3233/SW-222986

  10. Luo, A., Gao, S., Xu, Y.: Deep semantic match model for entity linking using knowledge graph and text. Proc. Comput. Sci. 129, 110–114 (2018). https://doi.org/10.1016/j.procs.2018.03.057

    Article  Google Scholar 

  11. Martins, P.H., Marinho, Z., Martins, A.F.T.: Joint learning of named entity recognition and entity linking. arXiv preprint arXiv:1907.08243, 2019.https://doi.org/10.48550/arXiv.1907.08243

  12. Fang, Z., Cao, Y., Li, R., et al.: High quality candidate generation and sequential graph attention network for entity linking. In: Proceedings of the Web Conference, pp. 640–650 (2020). https://doi.org/10.1145/3366423.3380146

  13. Broscheit, S.: Investigating entity knowledge in BERT with simple neural end-to-end entity linking[J]. arXiv preprint arXiv:2003.05473. (2020)

  14. Navigli, R., Velardi, P.: Structural semantic interconnections: a knowledge-based approach to word sense disambiguation. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1075–1086 (2005). https://doi.org/10.1109/TPAMI.2005.149

    Article  Google Scholar 

  15. Zan, H.Y.,Wu, Y.G., Jia, Y.X., et al.: Chinese Micro-blog named entity linking based on multiorigin knowledge. J. Shandong Univ.(Natural Science) 50(07), 9–16 (2015). https://doi.org/10.6040/j.issn.1671-9352.3.2014.026

  16. Dredze, M., Mcnamee, P., Rao, D., et al.: Entity disambiguation for knowledge base population. In: International Conference on Computational Linguistics. Association for Computational Linguistics (2010)

    Google Scholar 

  17. Christophides, V., Efthymiou, V., Palpanas, T., et al.: An overview of end-to-end entity resolution for big data. ACM Comput. Surv. (CSUR) 53(6), 1–42 (2020)

    Article  Google Scholar 

  18. Nicola De, C., Gautier, I., Sebastian, R., Fabio, P.: Autoregressive entity retrieval. In: International Conference on Learning Representations (2021b)

    Google Scholar 

  19. Lewis, M., Liu, Y., Goyal, N., et al.: Bart: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461. (2019)

  20. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, 27 (2014). https://doi.org/10.5555/2969033.2969173

  21. Evgeniy, G., Michael, R., Amarnag, S.: “FACC1: freebase annotation of ClueWeb corpora, Version 1 (Release date 2013–06–26, Format version 1, Correction level 0)”, June (2013)

    Google Scholar 

  22. Hoffart, J., Yosef, M.A., Bordino, I., et al.: Robust disambiguation of named entities in text. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 782–792 (2011)

    Google Scholar 

  23. Gupta, N., Singh, S., Roth, D.: Entity linking via joint encoding of types, descriptions, and context[C]//Proceedings of the. Conf. Empirical Methods Natural Lang. Process. 2017, 2681–2690 (2017). https://doi.org/10.18653/v1/D17-1284

    Article  Google Scholar 

  24. Nicola De, C., Wilker, A., Ivan, T.: Highly parallel autoregressive entity linking with discriminative correction. arXiv preprint arXiv:2109.03792 (2021a)

  25. Ravi, M.P.K., Singh, K., Mulang, I.O., et al.: CHOLAN: a modular approach for neural entity linking on Wikipedia and Wikidata. arXiv preprint arXiv:2101.09969 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weishui Lan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, D., Lan, W. (2024). Multi-source Autoregressive Entity Linking Based on Generative Method. In: Sun, Y., Lu, T., Wang, T., Fan, H., Liu, D., Du, B. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2023. Communications in Computer and Information Science, vol 2012. Springer, Singapore. https://doi.org/10.1007/978-981-99-9637-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9637-7_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9636-0

  • Online ISBN: 978-981-99-9637-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics