A Pilot Usability Study of a Humanoid Avatar to Assist Therapists of ASD Children | SpringerLink
Skip to main content

A Pilot Usability Study of a Humanoid Avatar to Assist Therapists of ASD Children

  • Conference paper
  • First Online:
Social Robotics (ICSR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14453 ))

Included in the following conference series:

  • 703 Accesses

Abstract

In this article, we report on a pilot study consisting of an evaluation of the usability satisfaction and effectiveness of a preliminary telerobotic system to assist therapists of children with ASD. Unlike existing pre-programmed robotic systems, our solution beamed therapists in a humanoid robot (Pepper) to reproduce in real-time the therapist’s gestures, speech and visual feedback aiming to embody the therapist in a humanoid robot avatar and be able to perform activities during an ESDM intervention. Evaluations of our system, used by eleven therapists in internal tests during mock session without children, are reported and suggest that future use in real therapy sessions with ASD children can begin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8464
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.autisme-ressources-lr.fr/index.php.

  2. 2.

    https://github.com/jrl-umi3218/mc_rtc.

  3. 3.

    https://github.com/jrl-umi3218/mc_naoqi.

  4. 4.

    http://doc.aldebaran.com/2-4/naoqi/motion/reflexes-smart-stiffness.html.

References

  1. Alibeigi, M., Rabiee, S., Ahmadabadi, M.N.: Inverse kinematics based human mimicking system using skeletal tracking technology. J. Intell. Robot. Syst. 1485, 27–45 (2017)

    Article  Google Scholar 

  2. Aymerich-Franch, L., Petit, D., Ganesh, G., Kheddar, A.: The second me: seeing the real body during humanoid robot embodiment produces an illusion of bi-location. Conscious. Cogn. 46, 99–109 (2016)

    Article  Google Scholar 

  3. Bartolini Girardot, A.M., Chatel, C., Bessis, C., Avenel, E., Garrigues, M.H., Poinso, F.: Expérimentation de la prise en charge early start denver model (ESDM): les effets sur le développement de 4 jeunes enfants avec troubles du spectre de l’autisme. Neuropsychiatr. Enfance Adolesc. 65(8), 461–468 (2017)

    Article  Google Scholar 

  4. Beaumont, R., Sofronoff, K.: A multi-component social skills intervention for children with asperger syndrome: the junior detective training program. J. Child Psychol. Psychiatry 49(8), 895 (2008)

    Google Scholar 

  5. Belmonte, M., Saxena-Chandhok, T., Cherian, R., Muneer, R., George, L., Karanth, P.: Oral motor deficits in speech-impaired children with autism. Front. Integrat. Neurosci. 7, 47 (2013)

    Google Scholar 

  6. Bolotnikova, A., Courtois, S., Kheddar, A.: Compliant robot motion regulated via proprioceptive sensor based contact observer. In: IEEE-RAS International Conference on Humanoid Robots, pp. 1–9 (2018)

    Google Scholar 

  7. Bolotnikova, A., Courtois, S., Kheddar, A.: Contact observer for humanoid robot pepper based on tracking joint position discrepancies. In: IEEE International Symposium on Robot and Human Interactive Communication, pp. 29–34 (2018)

    Google Scholar 

  8. Bolotnikova, A., Gergondet, P., Tanguy, A., Courtois, S., Kheddar, A.: Task-space control interface for softbank humanoid robots and its human-robot interaction applications. In: IEEE/SICE International Symposium on System Integration, pp. 560–565 (2021)

    Google Scholar 

  9. Cabibihan, J.-J., Javed, H., Ang, M., Aljunied, S.M.: Why robots? a survey on the roles and benefits of social robots in the therapy of children with autism. Int. J. Soc. Robot. 5(4), 593–618 (2013)

    Google Scholar 

  10. Chen, Y., et al.: Enhanced visual feedback with decoupled viewpoint control in immersive humanoid robot teleoperation using slam. In: IEEE-RAS 21st International Conference on Humanoid Robots, pp. 306–313 (2022)

    Google Scholar 

  11. Cisneros-Limon, R.,et al.: A cybernetic avatar system to embody human telepresence for connectivity, exploration and skill transfer. Int. J. Soc. Robot. (2024)

    Google Scholar 

  12. Coeckelbergh, M., et al.: A survey of expectations about the role of robots in robot-assisted therapy for children with ASD: ethical acceptability, trust, sociability, appearance, and attachment. Sci. Eng. Ethics 22(1), 1353–3452 (2016)

    Article  Google Scholar 

  13. Darvish, K., et al.: Whole-body geometric retargeting for humanoid robots. In: IEEE-RAS 19th International Conference on Humanoid Robots, pp. 679–686 (2019)

    Google Scholar 

  14. Efstratiou, R., et al.: Teaching daily life skills in autism spectrum disorder (ASD) interventions using the social robot pepper. In: Lepuschitz, W., Merdan, M., Koppensteiner, G., Balogh, R., Obdržálek, D. (eds.) RiE 2020. AISC, vol. 1316, pp. 86–97. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67411-3_8

    Chapter  Google Scholar 

  15. Finstad, K.: The usability metric for user experience. Interact. Comput. 22(5), 323–327 (2010), modelling user experience - An agenda for research and practice

    Google Scholar 

  16. Geoffray, M.M., et al.: Using ESDM 12 hours per week in children with autism spectrum disorder: feasibility and results of an observational study. Psychiatria Danubina (2019)

    Google Scholar 

  17. Geraldine, D., et al.: .: Early behavioral intervention is associated with normalized brain activity in young children with autism. J. Am. Acad. Child Adolesc. Psychiatry 51(11), 1150–1159 (2012)

    Google Scholar 

  18. Hassenzahl, M., Burmester, M., Koller, F.: AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität, pp. 187–196. Vieweg+Teubner Verlag, Wiesbaden (2003)

    Google Scholar 

  19. Hijaz, A., Korneder, J., Louie, W.Y.G.: In-the-wild learning from demonstration for therapies for autism spectrum disorder. In: IEEE International Conference on Robot and Human Interactive Communication, pp. 1224–1229 (2021)

    Google Scholar 

  20. Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: an historical survey. Automatica 42(12), 2035–2057 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huijnen, C.A.G.J., Lexis, M.A.S., Jansens, R., de Witte, L.P.: How to implement robots in interventions for children with autism? a co-creation study involving people with autism, parents and professionals. J. Autism Dev Disord 47(06), 3079–3096 (07 2017)

    Google Scholar 

  22. Ivani, A.S., et al.: A gesture recognition algorithm in a robot therapy for ASD children. Biomed. Signal Process. Control 74, 103512 (2022)

    Article  Google Scholar 

  23. Kouroupa, A., Laws, K.R., Irvine, K., Mengoni, S.E., Baird, A., Sharma, S.: The use of social robots with children and young people on the autism spectrum: a systematic review and meta-analysis. PLOS ONE 17(6), 1–25 (06 2022)

    Google Scholar 

  24. Kulikovskiy, R., Sochanski, M., Hijaz, A., Eaton, M., Korneder, J., Geoffrey Louie, W.Y.: Can therapists design robot-mediated interventions and teleoperate robots using VR to deliver interventions for ASD. In: IEEE International Conference on Robotics and Automation, pp. 3669–3676 (2021)

    Google Scholar 

  25. Likert, R.: A technique for the measurement of attitudes. Archives Psychol. 140(55) (1932)

    Google Scholar 

  26. Luo, R., et al.: Team northeastern: Reliable telepresence at the ANA XPRIZE avatar final testing. In: IEEE International Conference on Robotics and Automation (2023)

    Google Scholar 

  27. Marinoiu, E., Zanfir, M., Olaru, V., Sminchisescu, C.: 3D human sensing, action and emotion recognition in robot assisted therapy of children with autism. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  28. Mayadunne, M.M.M.S., Manawadu, U.A., Abeyratne, K.R., Silva, P.R.S.D.: A robotic companion for children diagnosed with autism spectrum disorder. In: International Conference on Image Processing and Robotics, pp. 1–6 (2020)

    Google Scholar 

  29. Pandey, A.K., Gelin, R.: A mass-produced sociable humanoid robot: pepper: the first machine of its kind. IEEE Robot. Autom. Mag. 25(3), 40–48 (2018)

    Article  Google Scholar 

  30. Robot enhanced therapy for children with autism disorders: measuring ethical acceptability. IEEE Technol. Soc. Mag. 35(2), 54–66 (2016)

    Google Scholar 

  31. Peter, C., Mengarelli, F.: La prise en charge précoce en autisme avec le modèle ESDM. Le Journal des psychologues 1(353), 19–22 (2018)

    Article  Google Scholar 

  32. Puglisi, A., et al.: Social humanoid robots for children with autism spectrum disorders: a review of modalities, indications, and pitfalls. Children 9(7), 953 (2022)

    Google Scholar 

  33. Raffaella, D., Vissia, C., Andrea, D., Giulia, B., Marco, C., Costanza, C.: Feasibility and outcomes of the early start denver model delivered within the public health system of the friuli venezia giulia italian region. Brain Sci. 11(9), 1191 (2021)

    Article  Google Scholar 

  34. Rogers, S.J., Dawson, G.: Early start denver model for young children with autism: Promoting language, learning, and engagement (2009)

    Google Scholar 

  35. Uluer, P., Kose, H., Landowska, A., Zorcec, T., Robins, B., Erol Barkana, D.: Child-robot interaction studies during COVID-19 pandemic

    Google Scholar 

  36. Wood, L.J., Zaraki, A., Robins, B., Dautenhahn, K.: Developing kaspar: a humanoid robot for children with autism. Int. J. Soc. Robot. 13, 491–508 (2021)

    Article  Google Scholar 

  37. Zehnder, E., Jouaiti, M., Charpillet, F.: Evaluating robot acceptance in children with ASD and their parents. In: International Conference on Social Robotics (2022)

    Google Scholar 

  38. Zeidan, J., et al.: Global prevalence of autism: a systematic review update. Autism Res. 15, 778–790 (2022)

    Google Scholar 

  39. Zheng, Z., Das, S., Young, E.M., Swanson, A., Warren, Z., Sarkar, N.: Autonomous robot-mediated imitation learning for children with autism. In: IEEE International Conference on Robotics and Automation, pp. 2707–2712 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole Fournier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fournier, C. et al. (2024). A Pilot Usability Study of a Humanoid Avatar to Assist Therapists of ASD Children. In: Ali, A.A., et al. Social Robotics. ICSR 2023. Lecture Notes in Computer Science(), vol 14453 . Springer, Singapore. https://doi.org/10.1007/978-981-99-8715-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8715-3_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8714-6

  • Online ISBN: 978-981-99-8715-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics