Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline | SpringerLink
Skip to main content

Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14437))

Included in the following conference series:

Abstract

Brain network analysis is essential for diagnosing and intervention for Alzheimer’s disease (AD). However, previous research relied primarily on specific time-consuming and subjective toolkits. Only few tools can obtain the structural brain networks from brain diffusion tensor images (DTI). In this paper, we propose a diffusion based end-to-end brain network generative model Brain Diffuser that directly shapes the structural brain networks from DTI. Compared to existing toolkits, Brain Diffuser exploits more structural connectivity features and disease-related information by analyzing disparities in structural brain networks across subjects. For the case of Alzheimer’s disease, the proposed model performs better than the results from existing toolkits on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8464
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. You, S., et al.: Fine perceptive GANs for brain MR image super-resolution in wavelet domain. IEEE Trans. Neural Netw. Learn. Syst. 34, 8802–8814 (2022)

    Article  Google Scholar 

  2. Hu, B., Zhan, C., Tang, B., Wang, B., Lei, B., Wang, S.Q.: 3-D brain reconstruction by hierarchical shape-perception network from a single incomplete image. IEEE Trans. Neural Netw. Learn. Syst. (2023)

    Google Scholar 

  3. Hu, S., Lei, B., Wang, S., Wang, Y., Feng, Z., Shen, Y.: Bidirectional mapping generative adversarial networks for brain MR to PET synthesis. IEEE Trans. Med. Imaging 41(1), 145–157 (2021)

    Article  Google Scholar 

  4. Yu, W., et al.: Morphological feature visualization of Alzheimer’s disease via multidirectional perception GAN. IEEE Trans. Neural Netw. Learn. Syst. 34, 4401–4415 (2022)

    Article  Google Scholar 

  5. Wang, H., et al.: Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer’s disease. Neurocomputing 333, 145–156 (2019)

    Article  Google Scholar 

  6. Hu, S., Yu, W., Chen, Z., Wang, S.: Medical image reconstruction using generative adversarial network for Alzheimer disease assessment with class-imbalance problem. In: 2020 IEEE 6th International Conference on Computer and Communications (ICCC), pp. 1323–1327. IEEE (2020)

    Google Scholar 

  7. Lei, B., et al.: Predicting clinical scores for Alzheimer’s disease based on joint and deep learning. Exp. Syst. Appl. 187, 115966 (2022)

    Article  Google Scholar 

  8. Wang, S., et al.: An ensemble-based densely-connected deep learning system for assessment of skeletal maturity. IEEE Trans. Syst. Man Cybern. Syst. 52(1), 426–437 (2020)

    Article  Google Scholar 

  9. Jing, C., Gong, C., Chen, Z., Lei, B., Wang, S.: TA-GAN: transformer-driven addiction-perception generative adversarial network. Neural Comput. Appl. 35(13), 9579–9591 (2023). https://doi.org/10.1007/s00521-022-08187-0

    Article  Google Scholar 

  10. Wang, S., Hu, Y., Shen, Y., Li, H.: Classification of diffusion tensor metrics for the diagnosis of a myelopathic cord using machine learning. Int. J. Neural Syst. 28(02), 1750036 (2018)

    Article  Google Scholar 

  11. Jeon, E., Kang, E., Lee, J., Lee, J., Kam, T.-E., Suk, H.-I.: Enriched representation learning in resting-state fMRI for early MCI diagnosis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 397–406. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_39

    Chapter  Google Scholar 

  12. Wang, S., Shen, Y., Chen, W., Xiao, T., Hu, J.: Automatic recognition of mild cognitive impairment from MRI images using expedited convolutional neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 373–380. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68600-4_43

    Chapter  Google Scholar 

  13. Cui, Z., Zhong, S., Xu, P., He, Y., Gong, G.: PANDA: a pipeline toolbox for analyzing brain diffusion images. Front. Hum. Neurosci. 7, 42 (2013)

    Article  Google Scholar 

  14. Parisot, S., et al.: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med. Image Anal. 48, 117–130 (2018)

    Article  Google Scholar 

  15. Ktena, S.I., et al.: Distance metric learning using graph convolutional networks: application to functional brain networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 469–477. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_54

    Chapter  Google Scholar 

  16. Pan, J., Lei, B., Wang, S., Wang, B., Liu, Y., Shen, Y.: DecGAN: decoupling generative adversarial network detecting abnormal neural circuits for Alzheimer’s disease. arXiv preprint arXiv:2110.05712 (2021)

  17. Pan, J., Wang, S.: Cross-modal transformer GAN: a brain structure-function deep fusing framework for Alzheimer’s disease. arXiv preprint arXiv:2206.13393 (2022)

  18. Kong, H., Pan, J., Shen, Y., Wang, S.: Adversarial learning based structural brain-network generative model for analyzing mild cognitive impairment. In: Yu, S., et al. (ed.) Pattern Recognition and Computer Vision, PRCV 2022. LNCS, vol. 13535, pp. 361–375. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18910-4_30

  19. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: ICML, pp. 2256–2265. PMLR (2015)

    Google Scholar 

  20. Wolleb, J., Bieder, F., Sandkühler, R., Cattin, P.C.: Diffusion models for medical anomaly detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention, MICCAI 2022. LNCS, vol. 13438, pp. 35–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_4

  21. Pinaya, W.H.L., et al.: Fast unsupervised brain anomaly detection and segmentation with diffusion models. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention, MICCAI 2022. LNCS, vol. 13438, pp. 705–714. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_67

  22. Chung, H., Ye, J.C.: Score-based diffusion models for accelerated MRI. Med. Image Anal. 80, 102479 (2021)

    Article  Google Scholar 

  23. Jo, J., Lee, S., Hwang, S.J.: Score-based generative modeling of graphs via the system of stochastic differential equations. In: ICML, pp. 10362–10383. PMLR (2022)

    Google Scholar 

  24. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR, pp. 10684–10695 (2022)

    Google Scholar 

  25. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  26. Vaswani, A., et al.: Attention is all you need. In: NIPS, vol. 30 (2017)

    Google Scholar 

  27. Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman, A., Carreira, J.: Perceiver: general perception with iterative attention. In: ICML, pp. 4651–4664. PMLR (2021)

    Google Scholar 

  28. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  29. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  30. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: ICLR (2019)

    Google Scholar 

  31. Ying, C., et al.: Do transformers really perform badly for graph representation? In: NIPS, vol. 34, pp. 28877–28888 (2021)

    Google Scholar 

  32. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS (2017)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by the National Natural Science Foundations of China under Grant 62172403, in part by the Distinguished Young Scholars Fund of Guangdong under Grant 2021B1515020019, in part by the Excellent Young Scholars of Shenzhen under Grant RCYX20200714114641211 and in part by Shenzhen Key Basic Research Project under Grant JCYJ20200109115641762, in part by the University of Macau under Grant MYRG2022-00190-FST, in part by the Science and Technology Development Fund, Macau SAR, under Grant 0034/2019/AMJ and Grant 0087/2020/A2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chi-Man Pun or Shuqiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X., Lei, B., Pun, CM., Wang, S. (2024). Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8558-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8557-9

  • Online ISBN: 978-981-99-8558-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics