Abstract
Unmanned aerial vehicles (UAVs) are frequently used for inspecting power lines and capturing high-resolution aerial images. However, detecting power lines in aerial images is difficult, as the foreground data (i.e., power lines) is small and the background information is abundant. To tackle this problem, we introduce DUFormer, a semantic segmentation algorithm explicitly designed to detect power lines in aerial images. We presuppose that it is advantageous to train an efficient Transformer model with sufficient feature extraction using a convolutional neural network (CNN) with a strong inductive bias. With this goal in mind, we introduce a heavy token encoder that performs overlapping feature remodeling and tokenization. The encoder comprises a pyramid CNN feature extraction module and a power line feature enhancement module. After successful local feature extraction for power lines, feature fusion is conducted. Then, the Transformer block is used for global modeling. The final segmentation result is achieved by amalgamating local and global features in the decode head. Moreover, we demonstrate the importance of the joint multi-weight loss function in power line segmentation. Our experimental results show that our proposed method outperforms all state-of-the-art methods in power line segmentation on the publicly accessible TTPLA dataset.
D. An and T. Li—Interns at Autel Robotics. Deyu An and Qiang Zhang contribute equally. This work was partially supported by Guiding Project of Fujian Science and Technology Program (No. 2022H0042).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdelfattah, R., Wang, X., Wang, S.: TTPLA: an aerial-image dataset for detection and segmentation of transmission towers and power lines. In: Proceedings of the Asian Conference on Computer Vision (2020)
Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: International Conference on Learning Representations (2015). http://arxiv.org/abs/1412.7062
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous convolution for semantic image segmentation. arXiv preprint: arXiv:1706.05587 (2017)
Chu, X., et al.: Twins: revisiting the design of spatial attention in vision transformers. In: Advances in Neural Information Processing Systems, vol. 34, pp. 9355–9366 (2021)
Chu, X., Tian, Z., Zhang, B., Wang, X., Shen, C.: Conditional positional encodings for vision transformers. In: International Conference on Learning Representations (2023)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)
Guo, J., et al.: CMT: convolutional neural networks meet vision transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12175–12185 (2022)
Guo, M.H., Lu, C.Z., Hou, Q., Liu, Z.N., Cheng, M.M., Hu, S.M.: SegNeXt: rethinking convolutional attention design for semantic segmentation. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K. (eds.) Advances in Neural Information Processing Systems (2022)
Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in transformer. In: Advances in Neural Information Processing Systems, vol. 34, pp. 15908–15919 (2021)
Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2019)
Li, Y., Zhang, K., Cao, J., Timofte, R., Van Gool, L.: LocaLViT: bringing locality to vision transformers. arXiv preprint: arXiv:2104.05707 (2021)
Lin, H., Cheng, X., Wu, X., Shen, D.: CAT: cross attention in vision transformer. In: 2022 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2022)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Roy, A.G., Navab, N., Wachinger, C.: Recalibrating fully convolutional networks with spatial and channel “squeeze and excitation’’ blocks. IEEE Trans. Med. Imaging 38(2), 540–549 (2018)
Wu, H., et al.: CVT: introducing convolutions to vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22–31 (2021)
Yuan, K., Guo, S., Liu, Z., Zhou, A., Yu, F., Wu, W.: Incorporating convolution designs into visual transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 579–588 (2021)
Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: Proceedings of the European Conference on Computer Vision (2020)
Zhang, H., et al.: Context encoding for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018)
Zhang, W., et al.: TopFormer: token pyramid transformer for mobile semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12083–12093 (2022)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2881–2890 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
An, D. et al. (2024). DUFormer: Solving Power Line Detection Task in Aerial Images Using Semantic Segmentation. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14432. Springer, Singapore. https://doi.org/10.1007/978-981-99-8543-2_5
Download citation
DOI: https://doi.org/10.1007/978-981-99-8543-2_5
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8542-5
Online ISBN: 978-981-99-8543-2
eBook Packages: Computer ScienceComputer Science (R0)