An Integrated Federated Learning and Meta-Learning Approach for Mining Operations | SpringerLink
Skip to main content

An Integrated Federated Learning and Meta-Learning Approach for Mining Operations

  • Conference paper
  • First Online:
AI 2023: Advances in Artificial Intelligence (AI 2023)

Abstract

Mining operations are increasingly adopting advanced technologies to improve operations. These technologies include sensors, drones, robotic drills, and autonomous haul trucks and generate large quantities of data. Analyzing these large datasets can significantly improve mining practices by optimizing outcomes. For example, in drill and blast designs, we can optimize through learning from distributed data processing across multiple sites. However, mines are not equipped to process and handle large amounts of data. The advent of Machine Learning (ML) has enabled the effective handling of large volumes of complex data and the extraction of valuable insights. To accelerate the development of machine learning models for drill and blast design development, we propose an architecture based on two emerging fields of machine learning: Federated Learning (FL) and meta-learning. The proposed architecture facilitates collaboration and encourages sharing best practices among mines while ensuring the data remains local to each mine. In this research, we analyze the proposed architecture, detailing its components and functionalities. Specifically, we aim to determine the optimal learning rate and boosting rounds for unseen mine data using meta-learning. Our evaluation demonstrates that our learning rate and boosting rounds significantly decrease the Root Mean Squared Error (RMSE) value over a standard learning rate by 28.6%, showing the efficacy of the proposed architecture. We examine the potential advantages and inherent challenges of developing a robust system with our architecture, setting the groundwork for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AbdulRahman, S., Tout, H., Ould-Slimane, H., Mourad, A., Talhi, C., Guizani, M.: A survey on federated learning: the journey from centralized to distributed on-site learning and beyond. IEEE Internet Things J. 8(7), 5476–5497 (2020)

    Article  Google Scholar 

  2. Arambakam, M., Beel, J.: Federated meta-learning: democratizing algorithm selection across disciplines and software libraries. In: 7th ICML Workshop on Automated Machine Learning (AutoML) (2020)

    Google Scholar 

  3. Armaghani, D.J., Koopialipoor, M., Bahri, M., Hasanipanah, M., Tahir, M.: A SVR-GWO technique to minimize flyrock distance resulting from blasting. Bull. Eng. Geol. Env. 79, 4369–4385 (2020)

    Article  Google Scholar 

  4. Bilim, N., Çelik, A., Kekeç, B.: A study in cost analysis of aggregate production as depending on drilling and blasting design. J. Afr. Earth Sci. 134, 564–572 (2017)

    Article  Google Scholar 

  5. Bonawitz, K., et al.: Towards federated learning at scale: system design. Proc. Mach. Learn. Syst. 1, 374–388 (2019)

    Google Scholar 

  6. Chandrahas, N.S., Choudhary, B.S., Teja, M.V., Venkataramayya, M., Prasad, N.K.: XG boost algorithm to simultaneous prediction of rock fragmentation and induced ground vibration using unique blast data. Appl. Sci. 12(10), 5269 (2022)

    Article  Google Scholar 

  7. Dong, F., et al.: PADP-FedMeta: a personalized and adaptive differentially private federated meta-learning mechanism for AIoT. J. Syst. Archit. 134, 102754 (2023)

    Google Scholar 

  8. Feurer, M., Hutter, F.: Hyperparameter optimization. Autom. Mach. Learn. Methods Syst. Challenges 3–33 (2019)

    Google Scholar 

  9. Hard, A., et al.: Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604 (2018)

  10. Hospedales, T., Antoniou, A., Micaelli, P., Storkey, A.: Meta-learning in neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 5149–5169 (2021)

    Google Scholar 

  11. Hutter, F., Kotthoff, L., Vanschoren, J.: Automated Machine Learning: Methods, Systems, Challenges. Springer Nature, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5

  12. Lawal, A.I.: A new modification to the Kuz-Ram model using the fragment size predicted by image analysis. Int. J. Rock Mech. Min. Sci. 138, 104595 (2021)

    Article  Google Scholar 

  13. Lawal, A.I., Kwon, S.: Application of artificial intelligence to rock mechanics: an overview. J. Rock Mech. Geotech. Eng. 13(1), 248–266 (2021)

    Article  Google Scholar 

  14. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.: Learning to generalize: meta-learning for domain generalization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  15. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020). https://doi.org/10.1109/MSP.2020.2975749

    Article  Google Scholar 

  16. Li, W., Wang, S.: Federated meta-learning for spatial-temporal prediction. Neural Comput. Appl. 34(13), 10355–10374 (2022). https://doi.org/10.1007/s00521-021-06861-3

  17. McCoy, J.T., Auret, L.: Machine learning applications in minerals processing: a review. Miner. Eng. 132, 95–109 (2019)

    Article  Google Scholar 

  18. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  19. McMahan, H.B., Ramage, D., Talwar, K., Zhang, L.: Learning differentially private recurrent language models. arXiv preprint arXiv:1710.06963 (2017)

  20. Mitchell, T.M., et al.: Machine Learning, vol. 1. McGraw-Hill, New York (2007)

    Google Scholar 

  21. Monjezi, M., Khoshalan, H.A., Varjani, A.Y.: Optimization of open pit blast parameters using genetic algorithm. Int. J. Rock Mech. Min. Sci. 48(5), 864–869 (2011)

    Article  Google Scholar 

  22. Obermeyer, Z., Emanuel, E.J.: Predicting the future-big data, machine learning, and clinical medicine. N. Engl. J. Med. 375(13), 1216 (2016)

    Article  Google Scholar 

  23. Patki, N., Wedge, R., Veeramachaneni, K.: The synthetic data vault. In: 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 399–410. IEEE (2016)

    Google Scholar 

  24. Połap, D., Woźniak, M.: Meta-heuristic as manager in federated learning approaches for image processing purposes. Appl. Soft Comput. 113, 107872 (2021)

    Article  Google Scholar 

  25. Qi, C.C.: Big data management in the mining industry. Int. J. Miner. Metall. Mater. 27(2), 131–139 (2020)

    Google Scholar 

  26. Qiu, Y., Zhou, J., Khandelwal, M., et al.: Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost, and BO-XGBoost models to predict blast-induced ground vibration. Eng. Comput. 38(5), 4145–4162 (2022). https://doi.org/10.1007/s00366-021-01393-9

  27. Raina, A.K., Murthy, V., Soni, A.K.: Flyrock in surface mine blasting: understanding the basics to develop a predictive regime. Current Sci. 660–665 (2015)

    Google Scholar 

  28. Rogers, W.P., et al.: Automation in the mining industry: review of technology, systems, human factors, and political risk. Min. Metall. Explor. 36(4), 607–631 (2019)

    Google Scholar 

  29. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991)

    Article  MathSciNet  Google Scholar 

  30. Sawmliana, C., Hembram, P., Singh, R.K., Banerjee, S., Singh, P., Roy, P.P.: An investigation to assess the cause of accident due to flyrock in an opencast coal mine: a case study. J. Inst. Eng. (India) Ser. D 101, 15–26 (2020)

    Google Scholar 

  31. Sevelka, T.: Preventing the potentially deadly consequences of flyrock: mandatory minimum setbacks and separation distances required. J. Nat. Resour. 5(4), 66–98 (2022)

    Google Scholar 

  32. Trivedi, R., Singh, T., Gupta, N.: Prediction of blast-induced flyrock in opencast mines using ANN and ANFIS. Geotech. Geol. Eng. 33, 875–891 (2015)

    Article  Google Scholar 

  33. Trivedi, R., Singh, T., Raina, A.: Prediction of blast-induced flyrock in Indian limestone mines using neural networks. J. Rock Mech. Geotech. Eng. 6(5), 447–454 (2014)

    Article  Google Scholar 

  34. Vanschoren, J.: Meta-learning: a survey. arXiv preprint arXiv:1810.03548 (2018)

  35. Wang, L., Alexander, C.A.: Machine learning in big data. Int. J. Math. Eng. Manag. Sci. 1(2), 52–61 (2016)

    Google Scholar 

  36. Yue, S., Ren, J., Xin, J., Zhang, D., Zhang, Y., Zhuang, W.: Efficient federated meta-learning over multi-access wireless networks. IEEE J. Sel. Areas Commun. 40(5), 1556–1570 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Venkat Munagala or Srikanth Thudumu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Munagala, V. et al. (2024). An Integrated Federated Learning and Meta-Learning Approach for Mining Operations. In: Liu, T., Webb, G., Yue, L., Wang, D. (eds) AI 2023: Advances in Artificial Intelligence. AI 2023. Lecture Notes in Computer Science(), vol 14471. Springer, Singapore. https://doi.org/10.1007/978-981-99-8388-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8388-9_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8387-2

  • Online ISBN: 978-981-99-8388-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics