Abstract
With the rapid development of smart technology and wireless communication technology, Intelligent Transportation System (ITS) is considered as an effective way to solve the traffic congestion problem. ITS is able to collect real-time road vehicle information through sensors such as networked vehicles (CV) and cameras, and through real-time interaction of information, signals can more intelligently implement adaptive signal adjustment, which can effectively reduce vehicle delays and traffic congestion. However, this connectivity also poses new challenges in terms of being affected by malicious attacks that affect traffic safety and efficiency. Reinforcement learning is considered as the future trend of control algorithms for intelligent transportation systems. In this paper, we design reinforcement learning intelligent control algorithms to control the intersection signal imposed by malicious attacks. The results show that the reinforcement learning-based signal control model can reduce vehicle delay and queue length by 22% and 23% relative to timing control. Meanwhile, the intensity learning is a model-free control method, which makes it impossible for attackers to target flaws in specific control logic and evaluate the impact of information attacks more effectively. Designing a coordinated state tampering attack between different lanes, the results show that the impact is greatest when the attacked states are in the same phase.
This work was supported in part by the Natural Science Foundation of Hunan under Grant 2021JJ40575, in part by The Open Fund of Hunan Key Laboratory of Smart Roadway and Cooperative Vehicle-Infrastructure Systems (Changsha University of Science amp; Technology) under grant kfj190701.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wu, M., Xiong, N.N., Tan, L.: An intelligent adaptive algorithm for environment parameter estimation in smart cities. IEEE Access 6, 23325–23337 (2018)
Xing, Y., Lv, C., Wang, H., et al.: Driver lane change intention inference for intelligent vehicles: framework, survey, and challenges. IEEE Trans. Veh. Technol. 68(5), 4377–4390 (2019)
Florin, R., Olariu, S.: A survey of vehicular communications for traffic signal optimization. Veh. Commun. 2(2), 70–79 (2015)
Li, W., Xu, H., Li, H., et al.: Complexity and algorithms for superposed data uploading problem in networks with smart devices. IEEE Internet Things J. 7(7), 5882–5891 (2019)
Lee, J., Park, B.: Development and evaluation of a cooperative vehicle intersection control algorithm under the connected vehicles environment. IEEE Trans. Intell. Transp. Syst. 13(1), 81–90 (2012)
Du, R., Qiu, G., Gao, K., et al.: Abnormal road surface recognition based on smartphone acceleration sensor. Sensors 20(2), 451 (2020)
Lu, N., Cheng, N., Zhang, N., et al.: Connected vehicles: solutions and challenges. IEEE Internet Things J. 1(4), 289–299 (2014)
Chen, Z., Luo, Z., Duan, X., et al.: Terminal handover in software-defined WLANs. EURASIP J. Wirel. Commun. Netw. 2020(1), 1–13 (2020)
Zheng, G., Xiong, Y., Zang, X., et al.: Learning phase competition for traffic signal control. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1963–1972 (2019)
Zhao, T., Wang, P., Li, S.: Traffic signal control with deep reinforcement learning. In: 2019 International Conference on Intelligent Computing, Automation and Systems (ICICAS), pp. 763–767. IEEE (2019)
Chu, T., Wang, J., Codecà, L., et al.: Multi-agent deep reinforcement learning for large-scale traffic signal control. IEEE Trans. Intell. Transp. Syst. 21(3), 1086–1095 (2019)
Gao, J., Shen, Y., Liu, J., et al.: Adaptive traffic signal control: Deep reinforcement learning algorithm with experience replay and target network. arXiv preprint arXiv:170502755 (2017)
Liang, X., Du, X., Wang, G., et al.: A deep reinforcement learning network for traffic light cycle control. IEEE Trans. Veh. Technol. 68(2), 1243–1253 (2019)
Sumalee, A., Ho, H.W.: Smarter and more connected: future intelligent transportation system. IATSS Res. 42(2), 67–71 (2018)
Alonso, B., Ibeas, Á., Musolino, G., et al.: Effects of traffic control regulation on network macroscopic fundamental diagram: a statistical analysis of real data. Transp. Res. Part A: Policy Pract. 126, 136–151 (2019)
Marcianò, F.A., Musolino, G., Vitetta, A.: Signal setting optimization on urban road transport networks: the case of emergency evacuation. Saf. Sci. 72, 209–220 (2015)
Filocamo, B., Ruiz, J.A., Sotelo, M.A.: Efficient management of road intersections for automated vehicles—the FRFP system applied to the various types of intersections and roundabouts. Appl. Sci. 10(1), 316 (2019)
Lin, Y., Wang, P., Ma, M.: Intelligent transportation system (ITS): concept, challenge and opportunity. In: 2017 IEEE 3rd International Conference on Big Data Security on Cloud (bigdatasecurity), IEEE International Conference on High Performance and Smart Computing (hpsc), and IEEE International Conference on Intelligent Data and Security (IDS), pp. 167–172. IEEE (2017)
Liu, W., Zhou, Q., Li, W., et al.: Path optimization of carpool vehicles for commuting trips under major public health events. J. Changsha Univ. Sci. Tech. 1, 112–120 (2023)
Zhang, Z.Y., Liu, Z., Jiang, L.: Follow-along model considering lateral spacing in vehicle networking environment. J. Changsha Univ. Sci. Tech. 3, 62–68 (2021)
Balint, K., Tamas, T., Tamas, B.: Deep reinforcement learning based approach for traffic signal control. Transp. Res. Procedia 62, 278–285 (2022)
Liu, W., Wang, Z., Liu, X., et al.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Ye, L., Gao, K., Huang, S., Huang, H., Du, R. (2024). A Reinforcement Learning-Based Controller Designed for Intersection Signal Suffering from Information Attack. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1966. Springer, Singapore. https://doi.org/10.1007/978-981-99-8148-9_26
Download citation
DOI: https://doi.org/10.1007/978-981-99-8148-9_26
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8147-2
Online ISBN: 978-981-99-8148-9
eBook Packages: Computer ScienceComputer Science (R0)