Abstract
Temporal Link Prediction (TLP), as one of the highly concerned tasks in graph mining, requires predicting the future link probability based on historical interactions. On the one hand, traditional methods based on node metrics, such as Common Neighbor, achieve satisfactory performance in the TLP task. On the other hand, node metrics overly focus on the global impact of nodes while neglecting the personalization of different node pairs, which can sometimes mislead link prediction results. However, mainstream TLP methods follow the standard paradigm of learning node embedding, entangling favorable and harmful node metric factors in the representation, reducing the model’s robustness. In this paper, we propose a plug-and-play plugin called Node Metric Disentanglement, which can apply to most TLP methods and boost their performance. It explicitly accounts for node metrics and disentangles them from the embedding representations generated by TLP methods. We adopt the attention mechanism to reasonably select information conducive to the TLP task and integrate it into the node embedding. Experiments on various state-of-the-art methods and dynamic graphs verify the effectiveness and universality of our NMD plugin.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)
Ahmad, I., Akhtar, M.U., Noor, S., Shahnaz, A.: Missing link prediction using common neighbor and centrality based parameterized algorithm. Sci. Rep. 10(1), 1–9 (2020)
Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
Barros, C.D., Mendonça, M.R., Vieira, A.B., Ziviani, A.: A survey on embedding dynamic graphs. ACM Comput. Surv. (CSUR) 55(1), 1–37 (2021)
Bedi, P., Sharma, C.: Community detection in social networks. Wiley Interdiscip. Rev. Data Mining Knowl. Discov. 6(3), 115–135 (2016)
Divakaran, A., Mohan, A.: Temporal link prediction: a survey. N. Gener. Comput. 38, 213–258 (2020)
Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. ACM Trans. Knowl. Discov. Data (TKDD) 5(2), 1–27 (2011)
Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)
Goyal, P., Chhetri, S.R., Canedo, A.M.: Capturing network dynamics using dynamic graph representation learning. US Patent App. 16/550,771 (2020)
Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Kitsak, M., et al.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)
Klemm, K., Serrano, M., Eguíluz, V.M., Miguel, M.S.: A measure of individual role in collective dynamics. Sci. Rep. 2(1), 1–8 (2012)
Kong, X., Shi, Y., Yu, S., Liu, J., Xia, F.: Academic social networks: modeling, analysis, mining and applications. J. Netw. Comput. Appl. 132, 86–103 (2019)
Kumar, S., Hooi, B., Makhija, D., Kumar, M., Faloutsos, C., Subrahmanian, V.: Rev2: fraudulent user prediction in rating platforms. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 333–341. ACM (2018)
Kumar, S., Spezzano, F., Subrahmanian, V., Faloutsos, C.: Edge weight prediction in weighted signed networks. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 221–230. IEEE (2016)
Lin, D., Wu, J., Xuan, Q., Chi, K.T.: Ethereum transaction tracking: inferring evolution of transaction networks via link prediction. Phys. A 600, 127504 (2022)
Lorrain, F., White, H.C.: Structural equivalence of individuals in social networks. J. Math. Sociol. 1(1), 49–80 (1971)
Ma, J., Cui, P., Kuang, K., Wang, X., Zhu, W.: Disentangled graph convolutional networks. In: International Conference on Machine Learning, pp. 4212–4221. PMLR (2019)
Ma, J., Zhou, C., Cui, P., Yang, H., Zhu, W.: Learning disentangled representations for recommendation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Min, S., Gao, Z., Peng, J., Wang, L., Qin, K., Fang, B.: Stgsn-a spatial-temporal graph neural network framework for time-evolving social networks. Knowl.-Based Syst. 214, 106746 (2021)
Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009)
Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bring order to the web. Technical report, Stanford University (1998)
Pareja, A., et al.: Evolvegcn: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5363–5370 (2020)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Qin, M., Yeung, D.Y.: Temporal link prediction: a unified framework, taxonomy, and review. arXiv preprint arXiv:2210.08765 (2022)
Sankar, A., Wu, Y., Gou, L., Zhang, W., Yang, H.: Dysat: deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 519–527 (2020)
Seo, Y., Defferrard, M., Vandergheynst, P., Bresson, X.: Structured sequence modeling with graph convolutional recurrent networks. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11301, pp. 362–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04167-0_33
Tang, H., Liu, J., Zhao, M., Gong, X.: Progressive layered extraction (PLE): a novel multi-task learning (MTL) model for personalized recommendations. In: Proceedings of the 14th ACM Conference on Recommender Systems, pp. 269–278 (2020)
Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008)
Travençolo, B.A.N., Costa, L.D.F.: Accessibility in complex networks. Phys. Lett. A 373(1), 89–95 (2008)
Wang, X., Jin, H., Zhang, A., He, X., Xu, T., Chua, T.S.: Disentangled graph collaborative filtering. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1001–1010 (2020)
Wu, J., et al.: Disenkgat: knowledge graph embedding with disentangled graph attention network. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 2140–2149 (2021)
Yang, M., Zhou, M., Kalander, M., Huang, Z., King, I.: Discrete-time temporal network embedding via implicit hierarchical learning in hyperbolic space. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1975–1985 (2021)
Yu, W., Aggarwal, C.C., Wang, W.: Temporally factorized network modeling for evolutionary network analysis. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 455–464 (2017)
Zhou, T., Lü, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phys. J. B 71, 623–630 (2009)
Acknowledgements
This work is funded by the National Key Research and Development Project (Grant No: 2022YFB2703100), the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study (Grant No. SN-ZJU-SIAS-001), and the Fundamental Research Funds for the Central Universities (2021FZZX001-23, 226-2023-00048).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, T., Zheng, T., Wan, Y., Li, Y., Huang, W. (2024). Disentangling Node Metric Factors for Temporal Link Prediction. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14448. Springer, Singapore. https://doi.org/10.1007/978-981-99-8082-6_27
Download citation
DOI: https://doi.org/10.1007/978-981-99-8082-6_27
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8081-9
Online ISBN: 978-981-99-8082-6
eBook Packages: Computer ScienceComputer Science (R0)