Disentangling Node Metric Factors for Temporal Link Prediction | SpringerLink
Skip to main content

Disentangling Node Metric Factors for Temporal Link Prediction

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14448))

Included in the following conference series:

  • 1088 Accesses

Abstract

Temporal Link Prediction (TLP), as one of the highly concerned tasks in graph mining, requires predicting the future link probability based on historical interactions. On the one hand, traditional methods based on node metrics, such as Common Neighbor, achieve satisfactory performance in the TLP task. On the other hand, node metrics overly focus on the global impact of nodes while neglecting the personalization of different node pairs, which can sometimes mislead link prediction results. However, mainstream TLP methods follow the standard paradigm of learning node embedding, entangling favorable and harmful node metric factors in the representation, reducing the model’s robustness. In this paper, we propose a plug-and-play plugin called Node Metric Disentanglement, which can apply to most TLP methods and boost their performance. It explicitly accounts for node metrics and disentangles them from the embedding representations generated by TLP methods. We adopt the attention mechanism to reasonably select information conducive to the TLP task and integrate it into the node embedding. Experiments on various state-of-the-art methods and dynamic graphs verify the effectiveness and universality of our NMD plugin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://journals.aps.org/datasets.

References

  1. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)

    Article  Google Scholar 

  2. Ahmad, I., Akhtar, M.U., Noor, S., Shahnaz, A.: Missing link prediction using common neighbor and centrality based parameterized algorithm. Sci. Rep. 10(1), 1–9 (2020)

    Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Google Scholar 

  4. Barros, C.D., Mendonça, M.R., Vieira, A.B., Ziviani, A.: A survey on embedding dynamic graphs. ACM Comput. Surv. (CSUR) 55(1), 1–37 (2021)

    Article  Google Scholar 

  5. Bedi, P., Sharma, C.: Community detection in social networks. Wiley Interdiscip. Rev. Data Mining Knowl. Discov. 6(3), 115–135 (2016)

    Article  Google Scholar 

  6. Divakaran, A., Mohan, A.: Temporal link prediction: a survey. N. Gener. Comput. 38, 213–258 (2020)

    Article  Google Scholar 

  7. Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. ACM Trans. Knowl. Discov. Data (TKDD) 5(2), 1–27 (2011)

    Article  Google Scholar 

  8. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)

    Article  Google Scholar 

  9. Goyal, P., Chhetri, S.R., Canedo, A.M.: Capturing network dynamics using dynamic graph representation learning. US Patent App. 16/550,771 (2020)

    Google Scholar 

  10. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  MATH  Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  13. Kitsak, M., et al.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  14. Klemm, K., Serrano, M., Eguíluz, V.M., Miguel, M.S.: A measure of individual role in collective dynamics. Sci. Rep. 2(1), 1–8 (2012)

    Article  Google Scholar 

  15. Kong, X., Shi, Y., Yu, S., Liu, J., Xia, F.: Academic social networks: modeling, analysis, mining and applications. J. Netw. Comput. Appl. 132, 86–103 (2019)

    Article  Google Scholar 

  16. Kumar, S., Hooi, B., Makhija, D., Kumar, M., Faloutsos, C., Subrahmanian, V.: Rev2: fraudulent user prediction in rating platforms. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 333–341. ACM (2018)

    Google Scholar 

  17. Kumar, S., Spezzano, F., Subrahmanian, V., Faloutsos, C.: Edge weight prediction in weighted signed networks. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 221–230. IEEE (2016)

    Google Scholar 

  18. Lin, D., Wu, J., Xuan, Q., Chi, K.T.: Ethereum transaction tracking: inferring evolution of transaction networks via link prediction. Phys. A 600, 127504 (2022)

    Article  MathSciNet  Google Scholar 

  19. Lorrain, F., White, H.C.: Structural equivalence of individuals in social networks. J. Math. Sociol. 1(1), 49–80 (1971)

    Article  Google Scholar 

  20. Ma, J., Cui, P., Kuang, K., Wang, X., Zhu, W.: Disentangled graph convolutional networks. In: International Conference on Machine Learning, pp. 4212–4221. PMLR (2019)

    Google Scholar 

  21. Ma, J., Zhou, C., Cui, P., Yang, H., Zhu, W.: Learning disentangled representations for recommendation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  22. Min, S., Gao, Z., Peng, J., Wang, L., Qin, K., Fang, B.: Stgsn-a spatial-temporal graph neural network framework for time-evolving social networks. Knowl.-Based Syst. 214, 106746 (2021)

    Article  Google Scholar 

  23. Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009)

    Article  Google Scholar 

  24. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bring order to the web. Technical report, Stanford University (1998)

    Google Scholar 

  25. Pareja, A., et al.: Evolvegcn: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5363–5370 (2020)

    Google Scholar 

  26. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  27. Qin, M., Yeung, D.Y.: Temporal link prediction: a unified framework, taxonomy, and review. arXiv preprint arXiv:2210.08765 (2022)

  28. Sankar, A., Wu, Y., Gou, L., Zhang, W., Yang, H.: Dysat: deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 519–527 (2020)

    Google Scholar 

  29. Seo, Y., Defferrard, M., Vandergheynst, P., Bresson, X.: Structured sequence modeling with graph convolutional recurrent networks. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11301, pp. 362–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04167-0_33

    Chapter  Google Scholar 

  30. Tang, H., Liu, J., Zhao, M., Gong, X.: Progressive layered extraction (PLE): a novel multi-task learning (MTL) model for personalized recommendations. In: Proceedings of the 14th ACM Conference on Recommender Systems, pp. 269–278 (2020)

    Google Scholar 

  31. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008)

    Google Scholar 

  32. Travençolo, B.A.N., Costa, L.D.F.: Accessibility in complex networks. Phys. Lett. A 373(1), 89–95 (2008)

    Google Scholar 

  33. Wang, X., Jin, H., Zhang, A., He, X., Xu, T., Chua, T.S.: Disentangled graph collaborative filtering. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1001–1010 (2020)

    Google Scholar 

  34. Wu, J., et al.: Disenkgat: knowledge graph embedding with disentangled graph attention network. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 2140–2149 (2021)

    Google Scholar 

  35. Yang, M., Zhou, M., Kalander, M., Huang, Z., King, I.: Discrete-time temporal network embedding via implicit hierarchical learning in hyperbolic space. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1975–1985 (2021)

    Google Scholar 

  36. Yu, W., Aggarwal, C.C., Wang, W.: Temporally factorized network modeling for evolutionary network analysis. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 455–464 (2017)

    Google Scholar 

  37. Zhou, T., Lü, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phys. J. B 71, 623–630 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Key Research and Development Project (Grant No: 2022YFB2703100), the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study (Grant No. SN-ZJU-SIAS-001), and the Fundamental Research Funds for the Central Universities (2021FZZX001-23, 226-2023-00048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyu Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, T., Zheng, T., Wan, Y., Li, Y., Huang, W. (2024). Disentangling Node Metric Factors for Temporal Link Prediction. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14448. Springer, Singapore. https://doi.org/10.1007/978-981-99-8082-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8082-6_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8081-9

  • Online ISBN: 978-981-99-8082-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics