Machine Learning Trends in Mushroom Agriculture: A Systematic Review Methodology | SpringerLink
Skip to main content

Machine Learning Trends in Mushroom Agriculture: A Systematic Review Methodology

  • Conference paper
  • First Online:
Advances in Visual Informatics (IVIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14322))

Included in the following conference series:

  • 555 Accesses

Abstract

The optimization of sustainable growth and management of mushrooms requires the utilization of machine learning models and appropriate evaluation techniques. Prior to implementing machine learning model in agricultural settings, preliminary trials are often conducted to mitigate potential risks. During the experimental phase, sample data sets are obtained from various agriculture sources or existing data repositories. In this paper a systematic review methodology is employed to analyze the machine learning models used in mushroom farming. The review encompasses 71 articles analyzed from 2014 to 2023, derived from published sources such as PubMed, Willey Online Library, IEEE, and Google Scholar. The purpose is to address several research questions, including the identification of trends in the use of machine learning models for mushroom farming, comprehension of the evaluation techniques utilized, selection of data sources, and knowledge of current methodologies and learning strategies in machine learning as they pertain to agriculture. Overall, this review provides valuable insight into the everyday practices of machine learning in the context of mushroom farming. Researchers and practitioners can utilize the findings to develop effective models, evaluation techniques, and learning strategies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Truzzi, E., Chaouch, M.A., Rossi, G., Tagliazucchi, L., Bertelli, D., Benvenuti, S.: Characterization and valorization of the agricultural waste obtained from Lavandula steam distillation for its reuse in the food and pharmaceutical fields. Molecules 27(5), 1613 (2022)

    Article  Google Scholar 

  2. Lu, T., Bau, T.: Biological characteristics and cultivation of fruit body of wild medicinal mushroom Perenniporia fraxinea. Acta Ecol. Sin. 33(17), 5194–5200 (2013)

    Article  Google Scholar 

  3. Sari, E.: Peningkatan keterampilan masyarakat melalui pelatihan pembibitan dan pembuatan baglog jamur tiram putih di Desa Pagarawan, Bangka. JURNAL EKONOMI, SOSIAL & HUMANIORA 1(04), 1–7 (2019)

    Google Scholar 

  4. Febriansyah, A., et al.: Penerapan machine learning Dalam Mitigasi Banjir Menggunakan data mining. Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) 3(3), 215–218 (2020)

    Article  Google Scholar 

  5. Utami, L.M., Rosnina, A.G.: Pengaruh Konsentrasi Sari Kacang Hijau Dan Teknik Inokulasi Terhadap Pertumbuhan Miselia Dan Hasil Jamur Kuping (Auricularia auricular Judae). Jurnal Agrium 15(2), 110–114 (2018)

    Article  Google Scholar 

  6. Chazar, C., Rafsanjani, M.H.: Penerapan teachable machine Pada Klasifikasi machine learning Untuk Identifikasi Bibit Tanaman. In: Prosiding Seminar Nasional Inovasi dan Adopsi Teknologi (INOTEK), vol. 2, no. 1, pp. 32–40, May 2022

    Google Scholar 

  7. Benos, L., Tagarakis, A.C., Dolias, G., Berruto, R., Kateris, D., Bochtis, D.: Machine learning in agriculture: a comprehensive updated review. Sensors 21(11), 3758 (2021)

    Article  Google Scholar 

  8. Abbas, F., Afzaal, H., Farooque, A.A., Tang, S.: Crop yield prediction through proximal sensing and machine learning algorithms. Agronomy 10(7), 1046 (2020)

    Article  Google Scholar 

  9. Qi, Y., Liu, H., Zhao, J., Xia, X.: Prediction model and demonstration of regional agricultural carbon emissions based on PCA-GS-KNN: a case study of Zhejiang province, China. Environ. Res. Commun. 5(5), 051001 (2023)

    Article  Google Scholar 

  10. Muhammad Fathul Alim, M.: Identifikasi Penyakit Tanaman Tomat Menggunakan Algoritma Convolutional Neural Network Dan Pendekatan Transfer Learning (2020)

    Google Scholar 

  11. Moysiadis, V., Kokkonis, G., Bibi, S., Moscholios, I., Maropoulos, N., Sarigiannidis, P.: Monitoring mushroom growth with machine learning. Agriculture 13(1), 223 (2023)

    Article  Google Scholar 

  12. Yin, H., Yi, W., Hu, D.: Computer vision and machine learning applied in the mushroom industry: a critical review. Comput. Electron. Agric. 198, 107015 (2022)

    Article  Google Scholar 

  13. Rahman, H., et al.: IoT enabled mushroom farm automation with machine learning to classify toxic mushrooms in Bangladesh. J. Agric. Food Res. 7, 100267 (2022)

    MathSciNet  Google Scholar 

  14. Mengist, W., Soromessa, T., Legese, G.: Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777 (2020)

    Article  Google Scholar 

  15. Pati, D., Lorusso, L.N.: How to write a systematic review of the literature. HERD Health Environ. Res. Des. J. 11(1), 15–30 (2018)

    Google Scholar 

  16. Triandini, E., Jayanatha, S., Indrawan, A., Putra, G.W., Iswara, B.: Metode systematic literature review untuk identifikasi platform dan metode pengembangan sistem informasi di Indonesia. Indonesian J. Inf. Syst. 1(2), 63–77 (2019)

    Article  Google Scholar 

  17. Rianasari, D., Triana, M.N., Dewi, M.R., Astutik, Y.: The classification of mushroom types using Naïve Bayes and principal component analysis. JISA (Jurnal Informatika dan Sains) 5(2), 124–130 (2022)

    Article  Google Scholar 

  18. Apat, S.K., Mishra, J., Raju, K.S., Padhy, N.: The robust and efficient machine learning model for smart farming decisions and allied intelligent agriculture decisions. J. Integr. Sci. Technol. 10(2), 139–155 (2022)

    Google Scholar 

  19. Dawn, N., et al.: Implementation of artificial intelligence, machine learning, and internet of things (IoT) in revolutionizing agriculture: a review on recent trends and challenges. Int. J. Exp. Res. Rev. 30, 190–218 (2023)

    Article  Google Scholar 

  20. Gupta, A.P.: Classification of mushroom using artificial neural network. bioRxiv, 2022-08 (2022)

    Google Scholar 

  21. Gangu, S.C., Bandi, M.N., Viswanadham, S., Sivaji, C.C., Kiran, T.S.: Edibility detection of mushroom using logistic regression and PCA. Int. J. Adv. Res. Comput. Sci. 13(3) (2022)

    Google Scholar 

  22. Morgan, M., Blank, C., Seetan, R.: Plant disease prediction using classification algorithms. IAES Int. J. Artif. Intell. 10(1), 257 (2021)

    Google Scholar 

  23. Wang, B.: Automatic mushroom species classification model for foodborne disease prevention based on vision transformer. J. Food Q. (2022)

    Google Scholar 

  24. Singh, D.K., Sobti, R., Kumar Malik, P., Shrestha, S., Singh, P.K., Ghafoor, K.Z.: IoT-driven model for weather and soil conditions based on precision irrigation using machine learning. Secur. Commun. Netw. (2022)

    Google Scholar 

  25. Wang, Y., Du, J., Zhang, H., Yang, X.: Mushroom toxicity recognition based on multigrained cascade forest. Sci. Program. 2020, 1–13 (2020)

    Google Scholar 

  26. Devika, G., Karegowda, A.G.: Identification of edible and non-edible mushroom through convolution neural network. In: 3rd International Conference on Integrated Intelligent Computing Communication & Security (ICIIC 2021), pp. 312–321. Atlantis Press (2021)

    Google Scholar 

  27. Liu, H., Liu, H., Li, J., Wang, Y.: Rapid and accurate authentication of porcini mushroom species using Fourier transform near-infrared spectra combined with machine learning and chemometrics. ACS Omega (2023)

    Google Scholar 

  28. Salehi, R., Yuan, Q., Chaiprapat, S.: Development of data-driven models to predict biogas production from spent mushroom compost. Agriculture 12(8), 1090 (2022)

    Article  Google Scholar 

  29. Lu, C.P., Liaw, J.J., Wu, T.C., Hung, T.F.: Development of a mushroom growth measurement system applying deep learning for image recognition. Agronomy 9(1), 32 (2019)

    Article  Google Scholar 

  30. Rong, J., Wang, P., Yang, Q., Huang, F.: A field-tested harvesting robot for oyster mushroom in greenhouse. Agronomy 11(6), 1210 (2021)

    Article  Google Scholar 

  31. Wu, Y., Sun, Y., Zhang, S., Liu, X., Zhou, K., Hou, J.: A size-grading method of antler mushrooms using YOLOv5 and PSPNet. Agronomy 12(11), 2601 (2022)

    Article  Google Scholar 

  32. Nabavi-Pelesaraei, A., Ghasemi-Mobtaker, H., Salehi, M., Rafiee, S., Chau, K.W., Ebrahimi, R.: Machine learning models of exergoenvironmental damages and emissions social cost for mushroom production. Agronomy 13(3), 737 (2023)

    Article  Google Scholar 

  33. Anagnostopoulou, D., Retsinas, G., Efthymiou, N., Filntisis, P., Maragos, P.: A realistic synthetic mushroom scenes dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6281–6288 (2023)

    Google Scholar 

  34. Lee, J.J., Aime, M.C., Rajwa, B., Bae, E.: Machine learning-based classification of mushrooms using a smartphone application. Appl. Sci. 12(22), 11685 (2022)

    Article  Google Scholar 

  35. Qi, L., Li, J., Liu, H., Li, T., Wang, Y.: An additional data fusion strategy for the discrimination of porcini mushrooms from different species and origins in combination with four mathematical algorithms. Food Funct. 9(11), 5903–5911 (2018)

    Article  Google Scholar 

  36. Charisis, C.: Evaluating deep instance segmentation methods for mushroom detection on proximate sensing datasets (2023)

    Google Scholar 

  37. Patil, M.R., Alandikar, M.P., Chaudhari, M.V., Patil, M.P., Deshpande, S.: Water demand prediction using machine learning (2022)

    Google Scholar 

  38. Agus Prayogoa, I.G.S.A.: Analysis of the effect of feature reduction on accuracy and computational time in mushroom dataset classification (2021)

    Google Scholar 

  39. Liu, Y., et al.: Early triage of critically ill adult patients with mushroom poisoning: machine learning approach. JMIR Formative Res. 7, e44666 (2023)

    Article  Google Scholar 

  40. Zahan, N., Hasan, M.Z., Malek, M.A., Reya, S.S.: A deep learning-based approach for edible, inedible and poisonous mushroom classification. In: 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), pp. 440–444. IEEE (2021)

    Google Scholar 

  41. Wibowo, A., Rahayu, Y., Riyanto, A., Hidayatulloh, T.: Classification algorithm for edible mushroom identification. In: 2018 International Conference on Information and Communications Technology (ICOIACT), pp. 250–253. IEEE (2018)

    Google Scholar 

  42. Chitayae, N., Sunyoto, A.: Performance comparison of mushroom types classification using K-nearest neighbor method and decision tree method. In: 2020 3rd International Conference on Information and Communications Technology (ICOIACT), pp. 308–313. IEEE (2020)

    Google Scholar 

  43. Mohd Ariffin, M.A., et al.: Enhanced IoT-based climate control for oyster mushroom cultivation using fuzzy logic approach and NodeMCU microcontroller. Pertanika J. Sci. Technol. 29(4) (2021)

    Google Scholar 

  44. Alkronz, E.S., Moghayer, K.A., Meimeh, M., Gazzaz, M., Abu-Nasser, B.S., Abu-Naser, S.S.: Prediction of whether mushroom is edible or poisonous using back-propagation neural network (2019)

    Google Scholar 

  45. Ottom, M.A., Alawad, N.A., Nahar, K.M.: Classification of mushroom fungi using machine learning techniques. Int. J. Adv. Trends Comput. Sci. Eng. 8(5), 2378–2385 (2019)

    Article  Google Scholar 

  46. Singh, S., Simran, S.A., Sushma, S.J.: Smart mushroom cultivation using IoT. Int. J. Eng. Res. Technol. (IJERT) 8(13), 65–69 (2020)

    Google Scholar 

  47. Khan, A.R., Nisha, S.S., Sathik, M.M.: Clustering techniques for mushroom dataset, 1121–1125 (2018)

    Google Scholar 

  48. Chumuang, N., et al.: Mushroom classification by physical characteristics by technique of k-nearest neighbor. In: 2020 15th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP), pp. 1–6. IEEE, November 2020

    Google Scholar 

  49. Ismail, S., Zainal, A.R., Mustapha, A.: Behavioural features for mushroom classification. In: 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), pp. 412–415. IEEE, April 2018

    Google Scholar 

  50. Al Maruf, M., Azim, A., Mukherjee, S.: Mushroom demand prediction using machine learning algorithms. In: 2020 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6. IEEE, October 2020

    Google Scholar 

  51. Liu, Z., Li, Y.: Fungi classification in various growth stages using shortwave infrared (SWIR) spectroscopy and machine learning. J. Fungi 8(9), 978 (2022)

    Article  Google Scholar 

  52. Verma, S.K., Dutta, M.: Mushroom classification using ANN and ANFIS algorithm. IOSR J. Eng. (IOSRJEN) 8(01), 94–100 (2018)

    Google Scholar 

  53. Retsinas, G., Efthymiou, N., Anagnostopoulou, D., Maragos, P.: Mushroom detection and three dimensional pose estimation from multi-view point clouds. Sensors 23(7), 3576 (2023)

    Article  Google Scholar 

  54. Ooro, T.: Identification of wild mushrooms using hyperspectral imaging and machine learning. Master’s thesis, Itä-Suomen yliopisto (2022)

    Google Scholar 

  55. Peng, Y., Xu, Y., Shi, J., Jiang, S.: Wild mushroom classification based on improved MobileViT deep learning. Appl. Sci. 13(8), 4680 (2023)

    Google Scholar 

  56. Wibowo, F.W.: International Conference on Information and Communications Technology (ICOIACT), 6–7 March 2018

    Google Scholar 

  57. Prayoga, S.A., Nawangsih, I., Wiyatno, T.N.: Implementasi Metode Naïve Bayes Classifier Untuk Identifikasi Jenis Jamur. Pelita Teknologi 14(2), 134–144 (2019)

    Google Scholar 

  58. Syafitri, N., Sari, J.E.: Sistem klasifikasi jamur dengan algoritma iterative dichotomiser 3. IT J. Res. Dev. 1(1), 27–37 (2016)

    Article  Google Scholar 

  59. Karlitasari, L., Sriyasa, I.W., Wahyudi, I., Santosi, H.B.: Prediksi Morfologi Jamur Menggunakan Algoritma C5. 0. Jurnal Teknoinfo 17(1), 271–278 (2023)

    Google Scholar 

  60. Wahdini, M.G., Lawi, A.: Klasifikasi Jamur dapat Dikonsumsi dan Beracun Menggunakan Model Bayesian Network. In: Seminar Nasional Teknik Elektro dan Informatika (SNTEI), vol. 8, no. 1, pp. 234–238, February 2023

    Google Scholar 

  61. Hayami, R., Gunawan, I.: Klasifikasi jamur menggunakan algoritma naïve bayes. Jurnal CoSciTech (Comput. Sci. Inf. Technol.) 3(1), 28–33 (2022)

    Google Scholar 

  62. Wibowo, A.: Purwarupa sistem pakar indentifikasi jamur layak konsumsi berbasis web. CESS (J. Comput. Eng. Syst. Sci.) 2(2), 112–118 (2017)

    MathSciNet  Google Scholar 

  63. Darmawan, A.F., Hanuranto, A.T., Hertiana, S.N.: Perancangan Aplikasi Penunjang Kualitas Jamur Tiram Berbasis Internet of Things (IoT) application design of quality support for oyster mushroom based on internet of things (IoT). eProce. Eng. 8(5) (2021)

    Google Scholar 

  64. Putri, O.N.: Implementasi Metode Cnn Dalam Klasifikasi Gambar Jamur Pada Analisis Image Processing. Gambar Jamur Dengan Genus Agaricus Dan Amanita, Studi Kasus (2020)

    Google Scholar 

  65. Wang, L., Li, J., Li, T., Liu, H., Wang, Y.: Method superior to traditional spectral identification: FT-NIR two-dimensional correlation spectroscopy combined with deep learning to identify the shelf life of fresh phlebopus portentosus. ACS Omega 6(30), 19665–19674 (2021)

    Article  Google Scholar 

  66. Chen, L., Qian, L., Zhang, X., Li, J., Zhang, Z., Chen, X.: Research progress on indoor environment of mushroom factory. Int. J. Agric. Biol. Eng. 15(1), 25–32 (2022)

    Google Scholar 

  67. Zubair, A., Muslikh, A.R.: Identifikasi jamur menggunakan metode k-nearest neighbor dengan ekstraksi ciri morfologi. In: Seminar Nasional Sistem Informasi (SENASIF), vol. 1, pp. 965–972, September 2017

    Google Scholar 

  68. Al Aziz, M.R., Furqon, M.T., Muflikhah, L.: Klasifikasi Jamur Dapat Dimakan atau Beracun Menggunakan Naïve Bayes dan Seleksi Fitur berbasis Association Rule Mining. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer 6(8), 3948–3955 (2022)

    Google Scholar 

  69. Fuady, G.M., et al.: Extreme learning machine and back propagation neural network comparison for temperature and humidity control of oyster mushroom based on microcontroller. In: 2017 International Symposium on Electronics and Smart Devices (ISESD), pp. 46–50. IEEE, October 2017

    Google Scholar 

  70. Kongsompong, S., E-kobon, T., Chumnanpuen, P.: K-nearest neighbor and random forest-based prediction of putative Tyrosinase inhibitory peptides of abalone Haliotis diversicolor. Molecules 26(12), 3671 (2021)

    Article  Google Scholar 

  71. Kusumaningrum, T.F.: Implementasi convolution neural network (CNN) untuk klasifikasi jamur konsumsi di Indonesia menggunakan Keras (2018)

    Google Scholar 

  72. Haksoro, E.I., Setiawan, A.: Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network. Jurnal ELTIKOM: Jurnal Teknik Elektro, Teknologi Informasi dan Komputer 5(2), 81–91 (2021)

    Article  Google Scholar 

  73. Dela Cruz-del Amen, J., Villaverde, J.F.: Fuzzy logic-based controlled environment for the production of oyster mushroom. In: 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), pp. 1–5. IEEE, November 2019

    Google Scholar 

  74. Cruz, G.B.D., Gerardo, B.D., Tanguilig, B.T.: Agricultural crops classification models based on PCA-GA implementation in data mining. Int. J. Model. Optim. 4(5), 375 (2014)

    Article  Google Scholar 

  75. Olpin, A.J., Dara, R., Stacey, D., Kashkoush, M.: Region-based convolutional networks for end-to-end detection of agricultural mushrooms. In: Mansouri, A., El Moataz, A., Nouboud, F., Mammass, D. (eds.) Image and Signal Processing: 8th International Conference, ICISP 2018, Cherbourg, France, 2–4 July 2018, Proceedings, vol. 8, pp. 319–328. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94211-7_35

  76. Cong, P., Feng, H., Lv, K., Zhou, J., Li, S.: MYOLO: a lightweight fresh shiitake mushroom detection model based on YOLOv3. Agriculture 13(2), 392 (2023)

    Article  Google Scholar 

  77. De La Garza, A.: Development of an imaging tool for commercial mushroom yield and quality estimation. Doctoral dissertation (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bayu Priyatna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Priyatna, B., Bakar, Z.A., Zamin, N., Yahya, Y. (2024). Machine Learning Trends in Mushroom Agriculture: A Systematic Review Methodology. In: Badioze Zaman, H., et al. Advances in Visual Informatics. IVIC 2023. Lecture Notes in Computer Science, vol 14322. Springer, Singapore. https://doi.org/10.1007/978-981-99-7339-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7339-2_47

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7338-5

  • Online ISBN: 978-981-99-7339-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics