Abstract
The optimization of sustainable growth and management of mushrooms requires the utilization of machine learning models and appropriate evaluation techniques. Prior to implementing machine learning model in agricultural settings, preliminary trials are often conducted to mitigate potential risks. During the experimental phase, sample data sets are obtained from various agriculture sources or existing data repositories. In this paper a systematic review methodology is employed to analyze the machine learning models used in mushroom farming. The review encompasses 71 articles analyzed from 2014 to 2023, derived from published sources such as PubMed, Willey Online Library, IEEE, and Google Scholar. The purpose is to address several research questions, including the identification of trends in the use of machine learning models for mushroom farming, comprehension of the evaluation techniques utilized, selection of data sources, and knowledge of current methodologies and learning strategies in machine learning as they pertain to agriculture. Overall, this review provides valuable insight into the everyday practices of machine learning in the context of mushroom farming. Researchers and practitioners can utilize the findings to develop effective models, evaluation techniques, and learning strategies in this field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Truzzi, E., Chaouch, M.A., Rossi, G., Tagliazucchi, L., Bertelli, D., Benvenuti, S.: Characterization and valorization of the agricultural waste obtained from Lavandula steam distillation for its reuse in the food and pharmaceutical fields. Molecules 27(5), 1613 (2022)
Lu, T., Bau, T.: Biological characteristics and cultivation of fruit body of wild medicinal mushroom Perenniporia fraxinea. Acta Ecol. Sin. 33(17), 5194–5200 (2013)
Sari, E.: Peningkatan keterampilan masyarakat melalui pelatihan pembibitan dan pembuatan baglog jamur tiram putih di Desa Pagarawan, Bangka. JURNAL EKONOMI, SOSIAL & HUMANIORA 1(04), 1–7 (2019)
Febriansyah, A., et al.: Penerapan machine learning Dalam Mitigasi Banjir Menggunakan data mining. Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) 3(3), 215–218 (2020)
Utami, L.M., Rosnina, A.G.: Pengaruh Konsentrasi Sari Kacang Hijau Dan Teknik Inokulasi Terhadap Pertumbuhan Miselia Dan Hasil Jamur Kuping (Auricularia auricular Judae). Jurnal Agrium 15(2), 110–114 (2018)
Chazar, C., Rafsanjani, M.H.: Penerapan teachable machine Pada Klasifikasi machine learning Untuk Identifikasi Bibit Tanaman. In: Prosiding Seminar Nasional Inovasi dan Adopsi Teknologi (INOTEK), vol. 2, no. 1, pp. 32–40, May 2022
Benos, L., Tagarakis, A.C., Dolias, G., Berruto, R., Kateris, D., Bochtis, D.: Machine learning in agriculture: a comprehensive updated review. Sensors 21(11), 3758 (2021)
Abbas, F., Afzaal, H., Farooque, A.A., Tang, S.: Crop yield prediction through proximal sensing and machine learning algorithms. Agronomy 10(7), 1046 (2020)
Qi, Y., Liu, H., Zhao, J., Xia, X.: Prediction model and demonstration of regional agricultural carbon emissions based on PCA-GS-KNN: a case study of Zhejiang province, China. Environ. Res. Commun. 5(5), 051001 (2023)
Muhammad Fathul Alim, M.: Identifikasi Penyakit Tanaman Tomat Menggunakan Algoritma Convolutional Neural Network Dan Pendekatan Transfer Learning (2020)
Moysiadis, V., Kokkonis, G., Bibi, S., Moscholios, I., Maropoulos, N., Sarigiannidis, P.: Monitoring mushroom growth with machine learning. Agriculture 13(1), 223 (2023)
Yin, H., Yi, W., Hu, D.: Computer vision and machine learning applied in the mushroom industry: a critical review. Comput. Electron. Agric. 198, 107015 (2022)
Rahman, H., et al.: IoT enabled mushroom farm automation with machine learning to classify toxic mushrooms in Bangladesh. J. Agric. Food Res. 7, 100267 (2022)
Mengist, W., Soromessa, T., Legese, G.: Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777 (2020)
Pati, D., Lorusso, L.N.: How to write a systematic review of the literature. HERD Health Environ. Res. Des. J. 11(1), 15–30 (2018)
Triandini, E., Jayanatha, S., Indrawan, A., Putra, G.W., Iswara, B.: Metode systematic literature review untuk identifikasi platform dan metode pengembangan sistem informasi di Indonesia. Indonesian J. Inf. Syst. 1(2), 63–77 (2019)
Rianasari, D., Triana, M.N., Dewi, M.R., Astutik, Y.: The classification of mushroom types using Naïve Bayes and principal component analysis. JISA (Jurnal Informatika dan Sains) 5(2), 124–130 (2022)
Apat, S.K., Mishra, J., Raju, K.S., Padhy, N.: The robust and efficient machine learning model for smart farming decisions and allied intelligent agriculture decisions. J. Integr. Sci. Technol. 10(2), 139–155 (2022)
Dawn, N., et al.: Implementation of artificial intelligence, machine learning, and internet of things (IoT) in revolutionizing agriculture: a review on recent trends and challenges. Int. J. Exp. Res. Rev. 30, 190–218 (2023)
Gupta, A.P.: Classification of mushroom using artificial neural network. bioRxiv, 2022-08 (2022)
Gangu, S.C., Bandi, M.N., Viswanadham, S., Sivaji, C.C., Kiran, T.S.: Edibility detection of mushroom using logistic regression and PCA. Int. J. Adv. Res. Comput. Sci. 13(3) (2022)
Morgan, M., Blank, C., Seetan, R.: Plant disease prediction using classification algorithms. IAES Int. J. Artif. Intell. 10(1), 257 (2021)
Wang, B.: Automatic mushroom species classification model for foodborne disease prevention based on vision transformer. J. Food Q. (2022)
Singh, D.K., Sobti, R., Kumar Malik, P., Shrestha, S., Singh, P.K., Ghafoor, K.Z.: IoT-driven model for weather and soil conditions based on precision irrigation using machine learning. Secur. Commun. Netw. (2022)
Wang, Y., Du, J., Zhang, H., Yang, X.: Mushroom toxicity recognition based on multigrained cascade forest. Sci. Program. 2020, 1–13 (2020)
Devika, G., Karegowda, A.G.: Identification of edible and non-edible mushroom through convolution neural network. In: 3rd International Conference on Integrated Intelligent Computing Communication & Security (ICIIC 2021), pp. 312–321. Atlantis Press (2021)
Liu, H., Liu, H., Li, J., Wang, Y.: Rapid and accurate authentication of porcini mushroom species using Fourier transform near-infrared spectra combined with machine learning and chemometrics. ACS Omega (2023)
Salehi, R., Yuan, Q., Chaiprapat, S.: Development of data-driven models to predict biogas production from spent mushroom compost. Agriculture 12(8), 1090 (2022)
Lu, C.P., Liaw, J.J., Wu, T.C., Hung, T.F.: Development of a mushroom growth measurement system applying deep learning for image recognition. Agronomy 9(1), 32 (2019)
Rong, J., Wang, P., Yang, Q., Huang, F.: A field-tested harvesting robot for oyster mushroom in greenhouse. Agronomy 11(6), 1210 (2021)
Wu, Y., Sun, Y., Zhang, S., Liu, X., Zhou, K., Hou, J.: A size-grading method of antler mushrooms using YOLOv5 and PSPNet. Agronomy 12(11), 2601 (2022)
Nabavi-Pelesaraei, A., Ghasemi-Mobtaker, H., Salehi, M., Rafiee, S., Chau, K.W., Ebrahimi, R.: Machine learning models of exergoenvironmental damages and emissions social cost for mushroom production. Agronomy 13(3), 737 (2023)
Anagnostopoulou, D., Retsinas, G., Efthymiou, N., Filntisis, P., Maragos, P.: A realistic synthetic mushroom scenes dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6281–6288 (2023)
Lee, J.J., Aime, M.C., Rajwa, B., Bae, E.: Machine learning-based classification of mushrooms using a smartphone application. Appl. Sci. 12(22), 11685 (2022)
Qi, L., Li, J., Liu, H., Li, T., Wang, Y.: An additional data fusion strategy for the discrimination of porcini mushrooms from different species and origins in combination with four mathematical algorithms. Food Funct. 9(11), 5903–5911 (2018)
Charisis, C.: Evaluating deep instance segmentation methods for mushroom detection on proximate sensing datasets (2023)
Patil, M.R., Alandikar, M.P., Chaudhari, M.V., Patil, M.P., Deshpande, S.: Water demand prediction using machine learning (2022)
Agus Prayogoa, I.G.S.A.: Analysis of the effect of feature reduction on accuracy and computational time in mushroom dataset classification (2021)
Liu, Y., et al.: Early triage of critically ill adult patients with mushroom poisoning: machine learning approach. JMIR Formative Res. 7, e44666 (2023)
Zahan, N., Hasan, M.Z., Malek, M.A., Reya, S.S.: A deep learning-based approach for edible, inedible and poisonous mushroom classification. In: 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), pp. 440–444. IEEE (2021)
Wibowo, A., Rahayu, Y., Riyanto, A., Hidayatulloh, T.: Classification algorithm for edible mushroom identification. In: 2018 International Conference on Information and Communications Technology (ICOIACT), pp. 250–253. IEEE (2018)
Chitayae, N., Sunyoto, A.: Performance comparison of mushroom types classification using K-nearest neighbor method and decision tree method. In: 2020 3rd International Conference on Information and Communications Technology (ICOIACT), pp. 308–313. IEEE (2020)
Mohd Ariffin, M.A., et al.: Enhanced IoT-based climate control for oyster mushroom cultivation using fuzzy logic approach and NodeMCU microcontroller. Pertanika J. Sci. Technol. 29(4) (2021)
Alkronz, E.S., Moghayer, K.A., Meimeh, M., Gazzaz, M., Abu-Nasser, B.S., Abu-Naser, S.S.: Prediction of whether mushroom is edible or poisonous using back-propagation neural network (2019)
Ottom, M.A., Alawad, N.A., Nahar, K.M.: Classification of mushroom fungi using machine learning techniques. Int. J. Adv. Trends Comput. Sci. Eng. 8(5), 2378–2385 (2019)
Singh, S., Simran, S.A., Sushma, S.J.: Smart mushroom cultivation using IoT. Int. J. Eng. Res. Technol. (IJERT) 8(13), 65–69 (2020)
Khan, A.R., Nisha, S.S., Sathik, M.M.: Clustering techniques for mushroom dataset, 1121–1125 (2018)
Chumuang, N., et al.: Mushroom classification by physical characteristics by technique of k-nearest neighbor. In: 2020 15th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP), pp. 1–6. IEEE, November 2020
Ismail, S., Zainal, A.R., Mustapha, A.: Behavioural features for mushroom classification. In: 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), pp. 412–415. IEEE, April 2018
Al Maruf, M., Azim, A., Mukherjee, S.: Mushroom demand prediction using machine learning algorithms. In: 2020 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6. IEEE, October 2020
Liu, Z., Li, Y.: Fungi classification in various growth stages using shortwave infrared (SWIR) spectroscopy and machine learning. J. Fungi 8(9), 978 (2022)
Verma, S.K., Dutta, M.: Mushroom classification using ANN and ANFIS algorithm. IOSR J. Eng. (IOSRJEN) 8(01), 94–100 (2018)
Retsinas, G., Efthymiou, N., Anagnostopoulou, D., Maragos, P.: Mushroom detection and three dimensional pose estimation from multi-view point clouds. Sensors 23(7), 3576 (2023)
Ooro, T.: Identification of wild mushrooms using hyperspectral imaging and machine learning. Master’s thesis, Itä-Suomen yliopisto (2022)
Peng, Y., Xu, Y., Shi, J., Jiang, S.: Wild mushroom classification based on improved MobileViT deep learning. Appl. Sci. 13(8), 4680 (2023)
Wibowo, F.W.: International Conference on Information and Communications Technology (ICOIACT), 6–7 March 2018
Prayoga, S.A., Nawangsih, I., Wiyatno, T.N.: Implementasi Metode Naïve Bayes Classifier Untuk Identifikasi Jenis Jamur. Pelita Teknologi 14(2), 134–144 (2019)
Syafitri, N., Sari, J.E.: Sistem klasifikasi jamur dengan algoritma iterative dichotomiser 3. IT J. Res. Dev. 1(1), 27–37 (2016)
Karlitasari, L., Sriyasa, I.W., Wahyudi, I., Santosi, H.B.: Prediksi Morfologi Jamur Menggunakan Algoritma C5. 0. Jurnal Teknoinfo 17(1), 271–278 (2023)
Wahdini, M.G., Lawi, A.: Klasifikasi Jamur dapat Dikonsumsi dan Beracun Menggunakan Model Bayesian Network. In: Seminar Nasional Teknik Elektro dan Informatika (SNTEI), vol. 8, no. 1, pp. 234–238, February 2023
Hayami, R., Gunawan, I.: Klasifikasi jamur menggunakan algoritma naïve bayes. Jurnal CoSciTech (Comput. Sci. Inf. Technol.) 3(1), 28–33 (2022)
Wibowo, A.: Purwarupa sistem pakar indentifikasi jamur layak konsumsi berbasis web. CESS (J. Comput. Eng. Syst. Sci.) 2(2), 112–118 (2017)
Darmawan, A.F., Hanuranto, A.T., Hertiana, S.N.: Perancangan Aplikasi Penunjang Kualitas Jamur Tiram Berbasis Internet of Things (IoT) application design of quality support for oyster mushroom based on internet of things (IoT). eProce. Eng. 8(5) (2021)
Putri, O.N.: Implementasi Metode Cnn Dalam Klasifikasi Gambar Jamur Pada Analisis Image Processing. Gambar Jamur Dengan Genus Agaricus Dan Amanita, Studi Kasus (2020)
Wang, L., Li, J., Li, T., Liu, H., Wang, Y.: Method superior to traditional spectral identification: FT-NIR two-dimensional correlation spectroscopy combined with deep learning to identify the shelf life of fresh phlebopus portentosus. ACS Omega 6(30), 19665–19674 (2021)
Chen, L., Qian, L., Zhang, X., Li, J., Zhang, Z., Chen, X.: Research progress on indoor environment of mushroom factory. Int. J. Agric. Biol. Eng. 15(1), 25–32 (2022)
Zubair, A., Muslikh, A.R.: Identifikasi jamur menggunakan metode k-nearest neighbor dengan ekstraksi ciri morfologi. In: Seminar Nasional Sistem Informasi (SENASIF), vol. 1, pp. 965–972, September 2017
Al Aziz, M.R., Furqon, M.T., Muflikhah, L.: Klasifikasi Jamur Dapat Dimakan atau Beracun Menggunakan Naïve Bayes dan Seleksi Fitur berbasis Association Rule Mining. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer 6(8), 3948–3955 (2022)
Fuady, G.M., et al.: Extreme learning machine and back propagation neural network comparison for temperature and humidity control of oyster mushroom based on microcontroller. In: 2017 International Symposium on Electronics and Smart Devices (ISESD), pp. 46–50. IEEE, October 2017
Kongsompong, S., E-kobon, T., Chumnanpuen, P.: K-nearest neighbor and random forest-based prediction of putative Tyrosinase inhibitory peptides of abalone Haliotis diversicolor. Molecules 26(12), 3671 (2021)
Kusumaningrum, T.F.: Implementasi convolution neural network (CNN) untuk klasifikasi jamur konsumsi di Indonesia menggunakan Keras (2018)
Haksoro, E.I., Setiawan, A.: Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network. Jurnal ELTIKOM: Jurnal Teknik Elektro, Teknologi Informasi dan Komputer 5(2), 81–91 (2021)
Dela Cruz-del Amen, J., Villaverde, J.F.: Fuzzy logic-based controlled environment for the production of oyster mushroom. In: 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), pp. 1–5. IEEE, November 2019
Cruz, G.B.D., Gerardo, B.D., Tanguilig, B.T.: Agricultural crops classification models based on PCA-GA implementation in data mining. Int. J. Model. Optim. 4(5), 375 (2014)
Olpin, A.J., Dara, R., Stacey, D., Kashkoush, M.: Region-based convolutional networks for end-to-end detection of agricultural mushrooms. In: Mansouri, A., El Moataz, A., Nouboud, F., Mammass, D. (eds.) Image and Signal Processing: 8th International Conference, ICISP 2018, Cherbourg, France, 2–4 July 2018, Proceedings, vol. 8, pp. 319–328. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94211-7_35
Cong, P., Feng, H., Lv, K., Zhou, J., Li, S.: MYOLO: a lightweight fresh shiitake mushroom detection model based on YOLOv3. Agriculture 13(2), 392 (2023)
De La Garza, A.: Development of an imaging tool for commercial mushroom yield and quality estimation. Doctoral dissertation (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Priyatna, B., Bakar, Z.A., Zamin, N., Yahya, Y. (2024). Machine Learning Trends in Mushroom Agriculture: A Systematic Review Methodology. In: Badioze Zaman, H., et al. Advances in Visual Informatics. IVIC 2023. Lecture Notes in Computer Science, vol 14322. Springer, Singapore. https://doi.org/10.1007/978-981-99-7339-2_47
Download citation
DOI: https://doi.org/10.1007/978-981-99-7339-2_47
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-7338-5
Online ISBN: 978-981-99-7339-2
eBook Packages: Computer ScienceComputer Science (R0)